Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-185
Authors: Ploch, Jan
Title: Zur Definition und zum Sicherheitskonzept der Vorspannung
Other Titles: On the definition and the safety concept of prestress
Issue Date: 2004
metadata.ubs.publikation.typ: Dissertation
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-17715
http://elib.uni-stuttgart.de/handle/11682/202
http://dx.doi.org/10.18419/opus-185
Abstract: In der Fachliteratur sind viele widersprüchliche Meinungen und Aussagen über die Behandlung der Vorspannung zu finden. Im ersten Teil der vorliegenden Arbeit werden diese unterschiedlichen Aspekte diskutiert. Es wird gezeigt, dass manche dieser Aussagen nur in einem begrenzten Anwendungsbereich oder nur unter bestimmten Annahmen gültig sind. Es wird folgende Definition vorgeschlagen, die für alle mechanisch vorgespannten Tragwerke anwendbar ist: Vorspannen ist das kontrollierte Einprägen von Verformungen mit dem Ziel, das Verhalten des Tragwerks günstig zu beeinflussen. Der Effekt des Vorspannens ist folglich als Zwang anzusehen. In typischen Spannbetontragwerken werden die Beanspruchungen aus Vorspannung in geringerem Maße abgebaut als solche infolge anderer eingeprägter Verformungen, z.B. Stützensenkung oder behinderter Temperaturverformung. Dies kann durch die Flexibilitätsmatrix von vorgespannten Tragwerken erklärt werden, in der die Beiträge der elastischen Spannglieder viel größer sind als die des kriechfähigen und möglicherweise gerissenen Betons. Daher verhalten sich die Beanspruchungen infolge Vorspannung eher wie die infolge äußerer Lasten, obwohl sie durch eingeprägte Verformungen hervorgerufen werden. Die Betrachtung der Vorspannung als isolierter Lastfall, beispielsweise im Sinne von „Vorspannung ist das, was übrig bleibt, wenn alle äußeren Lasten entfernt werden“, setzt linear elastisches Verhalten des Tragwerks voraus und schließt zeitabhängige Effekte aus. Diese Vorstellung trifft für die meisten Tragwerke nur während und kurz nach der Herstellung zu und kann dann als anschauliche Erklärung dienen. Die Definition der Vorspannung als Belastung, die zum Einprägen der Verformung aufgebracht wird, führt bei konsequenter Anwendung zu den gleichen Ergebnissen. Aber auch bei dieser Betrachtungsweise muss bei Vorspannung mit Verbund der Effekt des Vorspannens durch die Vordehnung berücksichtigt werden – also wiederum durch eine geometrische Größe. Der zweite Teil der Arbeit behandelt das Sicherheitskonzept für vorgespannte Konstruktionen bei der Bemessung mit Teilsicherheitsbeiwerten. Die nationalen und internationalen Vorschriften für Beton- und Stahltragwerke fassen die Vorspannung als unabhängige Einwirkung auf, die nicht mit den Eigenlasten korreliert ist. Die angegebenen Teilsicherheitsbeiwerte sind jedoch nicht konsistent. Ein anderer Ansatz, der von einigen Autoren vorgeschlagen wird, betrachtet Eigenlasten und Vorspannung als einen Lastfall „ständige Einwirkungen“ und sieht somit denselben Teilsicherheitsbeiwert für Vorspannung und Eigenlasten vor. Die unterschiedlichen Konzepte werden mit den Methoden der Zuverlässigkeitstheorie für Tragwerke verglichen. In einer Parameterstudie wird eine große Anzahl von unterspannten Stahlbetonträgern und von Spannbetonträgern mit Spanngliedern ohne Verbund untersucht. Es wird gezeigt, dass die Annahme von Eigenlasten und Vorspannung als voll korrelierte Einwirkungen nicht zu einem zufriedenstellenden Sicherheitsniveau führt. Es können folgende Empfehlungen für die Behandlung der Vorspannung mit Teilsicherheitsbeiwerten gegeben werden: Im Allgemeinen sollte die Vorspannung mit gammaP,sup=1,2 bei ungünstiger Wirkung und mit gammaP,inf=1,0 bei günstiger Wirkung beaufschlagt werden. Dies entspricht den deutschen Regelungen für vorgespannte Tragwerke aus Stahl. Wenn die Systemgeometrie während der Herstellung durch vermessungstechnische Kontrollen überwacht wird, wird eine hohe Korrelation von Eigenlasten und Vorspannung erzeugt. Dann kann die Vorspannung bei günstiger Wirkung mit gammaP,inf=1,1 erhöht werden, die Eigenlasten sind wie üblich mit gammaG,sup=1,35 zu versehen. Dieses Vorgehen kann jedoch nur gerechtfertigt werden, wenn die Verformungen infolge Streuungen der Eigenlasten oder der Vorspannung relativ groß sind, denn nur in diesem Fall kann davon ausgegangen werden, dass die Systemgeometrie während des Vorspannens kontrolliert wird. Es wird ein Kriterium auf der Grundlage von zulässigen Toleranzen vorgeschlagen, mit dem in der Entwurfsphase abgeschätzt werden kann, ob ein solches System vorliegt. Bei typischen Spannbetontragwerken, bei denen die Spannglieder innerhalb des Betons liegen, kann die Vorspannung mit gammaP,inf=gammaP,sup=1,0 versehen werden, wie es auch in der neuen deutschen Norm geregelt ist. Dies kann durch die Tatsache gerechtfertigt werden, dass der kritische Zeitpunkt für diese Tragwerke im Hinblick auf Streuungen der Vorspannung der Herstellvorgang ist. Auf Abweichungen kann daher unmittelbar reagiert werden. Wenn die Vorspannung die einzige oder die dominante ungünstige Einwirkung ist, z.B. in Verankerungsbereichen, sollte sie mit gammaP,sup=1,35 erhöht werden.
In the technical literature many controversial opinions and statements on the treatment of prestress can be found. In the first part of the thesis these different aspects are discussed. It is shown that some of the statements are valid only in a limited field of application or only with certain assumptions. Instead, the following definition is proposed which is applicable to structures of any material and shape: Prestressing means imposing controlled deformations in order to improve a structure’s behaviour. The effect of prestressing has therefore to be considered as restraint. In typical prestressed concrete structures the stresses due to prestress are diminished by creep or crack formation to a lesser extent than those due to other imposed deformations, e.g. settlement or temperature elongation. This is explained with the flexibility matrix of prestressed structures, where the contribution of the elastic tendons is much bigger than the contribution of creeping and possibly cracking concrete. Therefore the stresses due to prestress behave more like those from external loads although they are caused by imposed deformations. The consideration of prestress as an isolated load case, e.g. in the sense of “prestress is the remainder, when all external loads are taken away”, is based on linear elastic behaviour of the structure and the absence of time depending effects. This idea is applicable for most structures only during and shortly after erection and can help as descriptive explanation. The definition of prestress as load leads to the same results as the definition as restraint, if it is treated consistently. But also in this approach the effect of prestressing in structures with bonded tendons has to be taken into account by the prestrain – thus by a geometrical quantity. The second part of the thesis treats the safety concept for prestressed structures using partial safety factors. The national and international codes for concrete and steel structures consider prestress as an independent action which is not correlated with dead load. However, the given partial safety factors are not consistent. In another approach some authors consider dead load and prestress as one load case “permanent actions” and therefore apply the same partial safety factor to prestress an dead load. The different concepts are compared using the methods of structural reliability. In a numerical study a large number of cable supported concrete girders and prestressed beams with unbonded tendons is examined. It is shown that the assumption of dead load and prestress as fully correlated effects does not lead to a satisfactory safety level. The following recommendations for the treatment of prestress with partial safety factors can be given: In general prestress should be charged by gammaP,sup=1,2 in case of unfavourable effect and by gammaP,inf=1,0 in case of favourable effect. This is consistent with the German rules for prestressed steel structures. If the system’s geometry is controlled by surveying during prestressing, a high correlation of dead load and prestress is established. Then a favourable effect of prestressing may be increased by gammaP,inf=1,1, while dead load is treated with gammaG,sup=1,35 as usual. However, this approach is only justified, if the deformations due to scattering dead load or prestress are relatively big, because only in this case the system’s geometry will be controlled during prestressing. A criterion based on admissible tolerances is proposed to decide in the design stage, if the structure is suitable for this approach. Prestress in typical structures with tendons inside the depth of the concrete structure can be safely treated with gammaP,inf=gammaP,sup=1,0, as it is prescribed by the new German code for concrete structures. This can be justified by the fact that the critical period for these structures with respect to scattering prestress is the erection phase. Deviations from the regular behaviour can therefore be recognised and counteracted. If prestress is the only or the dominant action, as e.g. in anchorage zones, it should be increased by gammaP,sup=1,35.
Appears in Collections:02 Fakultät Bau- und Umweltingenieurwissenschaften

Files in This Item:
File SizeFormat 
Diss_Ploch_A5.pdf1,94 MBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.