Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-3462
Authors: Valentin, Julian
Title: Hierarchische Optimierung mit Gradientenverfahren auf Dünngitterfunktionen
Issue Date: 2014
metadata.ubs.publikation.typ: Abschlussarbeit (Master)
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-97586
http://elib.uni-stuttgart.de/handle/11682/3479
http://dx.doi.org/10.18419/opus-3462
Abstract: Überall, wo Parameter bei Simulationen oder Experimenten ins Spiel kommen, sind Optimierungsaufgaben von Interesse. Grundlegende Annahme ist in der Regel eine gewisse Glattheit der funktionalen Abhängigkeiten. Beispiele für solche Aufgaben kommen aus den verschiedensten Bereichen, von Crash-Test- bis Strömungssimulationen. Ein zentrales Problem ist in der Regel, dass jede betrachtete Parameterkombination eine aufwendige Simulationsaufgabe erzwingt. Mit möglichst wenig Simulationen (bzw. Samples) auszukommen, ist daher wünschenswert. Ein Ansatz ist die Konstruktion von Surrogaten, beispielsweise über die Interpolation mittels globaler Polynome. Bei mehr als vier oder fünf Dimensionen scheidet dies aber aufgrund des Fluchs der Dimensionalität aus. Hier bieten dünne Gitter eine Möglichkeit, den Fluch der Dimensionalität ein großes Stück weit zu lindern. Optimierungsaufgaben auf Dünngittersurrogaten durchzuführen, scheiterte bislang an den verwendeten Ansatzfunktionen. Stückweise lineare oder polynomielle Funktionen sind hierzu aus naheliegenden Gründen nicht geeignet. In dieser Masterarbeit werden B-Splines als Basisfunktionen verwendet und die Optimierung auf Dünngittersurrogaten mit gradientenbasierten Optimierungsmethoden untersucht.
Appears in Collections:05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Files in This Item:
File Description SizeFormat 
MSTR_3629.pdf10,29 MBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.