Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-5888
Autor(en): Lätzel, Marc
Titel: From microscopic simulations towards a macroscopic description of granular media
Sonstige Titel: Der Übergang von Micro Scale Simulationen zu einer makroskopischen Beschreibung granularer Medien
Erscheinungsdatum: 2003
Dokumentart: Dissertation
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-13497
http://elib.uni-stuttgart.de/handle/11682/5905
http://dx.doi.org/10.18419/opus-5888
Zusammenfassung: Sitzt man am Strand und beobachtet Kinder beim Bau von Sandburgen oder Pferde die über den Sand galoppieren, wird sich kaum jemand Gedanken über eine mathematische Beschreibung des Sandes machen. Dennoch lohnen sich diese Gedanken. Sand gehört zu einer Gruppe von Materialien, die als granulares Material oder Schüttgut bezeichnet wird. Im alltäglichen Gebrauch fallen uns granulare Materialien meist nicht auf, obwohl bereits beim Frühstück das Kaffeepulver oder die Cornflakes Beispiele granularer Medien sind. Zucker, Tabletten oder Zahncreme sind weitere Beispiele granularen Materials im Haushalt. Auch im industriellen Umfeld sind Schüttgüter wie Erze, Zement oder auch Plastikgranulate omnipräsent. Aufgrund ihrer Allgegenwärtigkeit erscheinen Granulate häufig als einfach und gut verstanden, allerdings geben einige Phänomene im Verhalten von Schüttgütern bis heute Rätsel auf. Die vorliegende Arbeit beschäftigt sich mit Scherzonen und Dilatanz in einem gescherten Granulat, ihrer Modellierung und theoretischen Beschreibung. Der Aufbau der Arbeit spiegelt diese Ziele wider, indem zunächst ein experimentelles Modellsystem vorgestellt und anschließend mittels einer Molekulardynamik simuliert wird. Um einen Vergleich von Experiment und Simulation zu ermöglichen, wird ein geeigneter Mittelungsformalismus entwickelt, um aus den diskreten "mikroskopischen" Größen der Simulation "makroskopische" Messgrößen zu erhalten. Dieser Formalismus wird verwendet, um kinematische Größen wie Geschwindigkeitsprofile und Rotationen in der Simulation der Scherzelle zu ermitteln und mit den experimentellen Daten zu vergleichen. Aufgrund der gefundenen Vergleichbarkeit von Experiment und Simulation lassen sich dann vertrauenswürdige Aussagen auch über Größen treffen, die im Experiment gar nicht oder nur schwer zugänglich, jedoch für das Verständnis der Vorgänge innerhalb des Granulates hilfreich sind. Im Rahmen eines kontinuumstheoretischen Ansatzes werden die Spannungen und die Deformationen des Granulates bestimmt. Zusätzlich wird der Fabric-, oder Strukturtensor ermittelt, mit dessen Hilfe sich Aussagen über die innere Struktur des Schüttgutes, wie beispielsweise den Grad der Anisotropie, treffen lassen. Die ermittelten Feldgrößen werden dann verwendet, um Materialkenngrößen einer Kontinuumstheorie zu bestimmen. Dazu wird zunächst ein elastisches Materialgesetz nach Hooke verwendet und der Elastizitäts- und Schermodul berechnet. Da es sich zeigt, dass die Rotationen der einzelnen Körner im System eine wichtige Rolle für das Verhalten des Materials insbesondere in der Scherzone spielen, führen wir einen Cosserat-Ansatz ein, in welchem die klassische Kontinuumstheorie um die rotatorischen Freiheitsgrade erweitert wird. Daher müssen die Bilanzrelationen um Gleichungen für Momente und Krümmungen erweitert werden. Diese Größen werden ebenfalls aus den Simulationen bestimmt und eine neue Materialgröße, die Verdrehungssteifigkeit errechnet. Im letzten Teil der vorliegenden Arbeit werden die Ergebnisse der Simulationen mit den Vorhersagen eines elasto-plastischen Cosserat-Modells verglichen. Da experimentelle Daten für diesen Vergleich fehlen, bietet die Simulation hier erstmals die Möglichkeit einen Test des Modells durchzuführen.
While sitting on a beach and watching children building sand castles or horses galloping on the sand no one will think of how to describe sand in a mathematical way. But it is worth thinking about. Sand belongs to a group of materials known as granular materials. Most of the time we handle granular materials in everyday life, we do not even notice it. At breakfast, the coffee powder and the cereals are granular materials. Sugar, drugs and tooth paste are other examples of granular media in a household. In industrial environments granular materials are also omnipresent, e.g. cement, ore and plastic pellets. With the abundance of granular materials they often seem particularly ordinary and well understood, yet there are a lot of phenomena which are still not. In the present thesis we will focus on the shear zone and dilatancy in a sheared granular media, its modeling and theoretical description. Therefore, the aim of this thesis is twofold. On the one hand, a discrete element method (DEM) is carried out and compared with an experiment. On the other hand, a micro-macro transition is developed and applied, leading to insights related to constitutive models for continuum theories. These two goals also reflect in the structure of the thesis. After an introductory part the setup of the simulation and the experiment are presented. A motivation for the use of the Couette shear device is given, as well as an overview of the literature on Couette devices. The dimensions of the system and the particles confined in the cell are shown and the way of preparing the system is outlined. Interspersed in this first sections the differences between the physical system and the simulation are pointed out. The molecular dynamics (MD) algorithm used for simulation is briefly outlined and the integration method and a speed up method for the neighborhood search, namely the linked-cell algorithm, are recalled. Since the interaction forces between the particles play a significant role in the simulation of granular media, the necessary laws and their implementation are provided. Forces in the normal direction at a contact point are dealt with as well as tangential forces. In order to compare the results of the simulation to experiments and to move forward towards a continuum description of the system, a consistent way of obtaining various quantities is developed. The use of the averaging formalism is demonstrated by computing the local density profile and the velocity profile in the shear cell. The simulation results are compared to the experimental data. In the simulations and in the experiments an initial, homogeneous density becomes radially non-uniform as a consequence of the shear induced dilatancy. The investigation of this shear zone shows good quantitative agreement between experiment and simulation. Special attention is drawn to the kinematic properties of the device such as radial and angular velocities and the spin of the particles. Profile as well as distribution data are compared and the quantitative agreement/disagreement is discussed and possible reasons are given. Because of the good agreement the simulation is used to gain further insights on quantities not available from the experiment. These quantities are useful in order to explore granular media by means of a continuum theory. In the context of a continuum approach different macroscopic tensorial quantities are obtained. Even if not a quantity of the classical continuum theory the fabric tensor is introduced. The fabric tensor describes the local structure of the granulate to some extent and therefore is a measure for the anisotropy of the system. It is also used in the definition of the stress and strain tensors. Finally, these tensors are used to compute the macroscopic moduli, namely the Young's and the shear modulus which we use to develop a new constitutive model relating the stress with the deformations and the structure inside a granular assembly. Due to the ability of the single grains to rotate freely, the classical continuum theory has to be extended. Therefore, a Cosserat type theory is used in which the balance equations of the classical theory are extended by equations for couple stresses and curvature. The related macroscopic quantities of the theory are calculated from the simulations and a new modulus, the torque resistance is calculated. In the last part of this thesis the results of the simulations are compared with the predictions of a recently presented micropolar continuum model involving the previously discussed ideas of coupled stresses and a flow rule as an additional ingredient. As experimental results are missing for a comparison with this theory the simulations yield a first possibility to test the model.
Enthalten in den Sammlungen:13 Zentrale Universitätseinrichtungen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Thesis_Laetzel.pdf2,63 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.