Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-6763
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.advisorHirth, Thomas (Prof. Dr.)de
dc.contributor.authorRoelofs, Kimball Sebastiaande
dc.date.accessioned2011-05-03de
dc.date.accessioned2016-03-31T10:32:47Z-
dc.date.available2011-05-03de
dc.date.available2016-03-31T10:32:47Z-
dc.date.issued2010de
dc.identifier.isbn978-3-8396-0122-8de
dc.identifier.other343155559de
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-62851de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/6780-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-6763-
dc.description.abstractThe decreasing availability of fossil fuels and the increasing impact of greenhouse gases on the environment lead to an extensive development of more efficient or renewable energy sources. The direct alcohol fuel cell (DAFC) as a portable energy source is a promising and fast growing technology which meets these demands. Up to now, methanol is mostly studied as a fuel for these devices, however, applying ethanol has some evident advantages over methanol. The major challenges in direct ethanol fuel cell (DEFC) research on component level are the catalyst development and the electrolyte membrane development. The focus of this thesis lies on the development and characterization of proton conductive membranes for application in direct ethanol fuel cells (DEFC). Sulfonated poly(ether ether ketone) (sPEEK) based organic-inorganic mixed-matrix membranes are developed and, in addition, the inorganic phase is modified with functional silanes carrying basic groups. The membranes are characterized with respect to fuel crossover, proton conductivity, membrane stability and direct ethanol fuel cell tests.en
dc.description.abstractThe decreasing availability of fossil fuels and the increasing impact of greenhouse gases on the environment lead to an extensive development of more efficient or renewable energy sources. The direct alcohol fuel cell (DAFC) as a portable energy source is a promising and fast growing technology which meets these demands. Up to now, methanol is mostly studied as a fuel for these devices, however, applying ethanol has some evident advantages over methanol. The major challenges in direct ethanol fuel cell (DEFC) research on component level are the catalyst development and the electrolyte membrane development. The focus of this thesis lies on the development and characterization of proton conductive membranes for application in direct ethanol fuel cells (DEFC). Sulfonated poly(ether ether ketone) (sPEEK) based organic-inorganic mixed-matrix membranes are developed and, in addition, the inorganic phase is modified with functional silanes carrying basic groups. The membranes are characterized with respect to fuel crossover, proton conductivity, membrane stability and direct ethanol fuel cell tests.en
dc.language.isoende
dc.relation.ispartofseriesBerichte aus Forschung und Entwicklung / Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik, IGB;36de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.classificationPorenfreie Membran , Technische Membran , Brennstoffzelle , Polymer-Elektrolytmembran-Brennstoffzelle , Ethanol , Permeabilitätde
dc.subject.ddc620de
dc.subject.otherDirekt-Ethanol-Brennstoffzellen (DEFC) , Sulfoniertes Poly-(Ether-Ether-Keton) (SPEEK) , Mixed-Matrix-Membran (MMM) , Protonenleitfähigkeitde
dc.subject.otherdirect ethanol fuel cells (DEFC) , sulfonated poly(ether ether ketone) (sPEEK) , polymer electrolyte membrane (PEM) , mixed matrix membrane (MMM)en
dc.titleSulfonated poly(ether ether ketone) based membranes for direct ethanol fuel cellsen
dc.title.alternativeSulfonierte Poly-(Ether-Ether-Keton) basierte Membranen für Direkt-Ethanol-Brennstoffzellende
dc.typedoctoralThesisde
dc.date.updated2014-04-03de
ubs.dateAccepted2010-03-22de
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.fakultaetFakultät Energie-, Verfahrens- und Biotechnikde
ubs.institutFraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik (IGB)de
ubs.institutInstitut für Grenzflächenverfahrenstechnik und Plasmatechnologiede
ubs.opusid6285de
ubs.publikation.typDissertationde
ubs.schriftenreihe.nameBerichte aus Forschung und Entwicklung / Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik, IGBde
ubs.thesis.grantorFakultät Energie-, Verfahrens- und Biotechnikde
Enthalten in den Sammlungen:14 Externe wissenschaftliche Einrichtungen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Dissertation_Kimball_S_Roelofs_UniStuttgart_IGVT_FraunhoferVerlag.pdf3,6 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.