Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-8286
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorSchmitt, Synde
dc.contributor.authorGünther, Michaelde
dc.contributor.authorRupp, Tillede
dc.contributor.authorBayer, Alexandrade
dc.contributor.authorHäufle, Daniel F. B.de
dc.date.accessioned2015-02-06de
dc.date.accessioned2016-03-31T11:45:45Z-
dc.date.available2015-02-06de
dc.date.available2016-03-31T11:45:45Z-
dc.date.issued2013de
dc.identifier.other425959570de
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-98227de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/8303-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-8286-
dc.description.abstractThe construction of artificial muscles is one of the most challenging developments in today's biomedical science. The application of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator.en
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.classificationModell , Stabilitätde
dc.subject.ddc500de
dc.subject.otherkünstlicher Muskelde
dc.subject.othermodel , stability , artificial muscleen
dc.titleTheoretical hill-type muscle and stability : numerical model and applicationen
dc.typearticlede
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.fakultaetFakultät Wirtschafts- und Sozialwissenschaftende
ubs.fakultaetInterfakultäre Einrichtungende
ubs.institutSonstige Einrichtungde
ubs.institutInstitut für Sport- und Bewegungswissenschaftde
ubs.institutStuttgart Research Centre for Simulation Technology (SRC SimTech)de
ubs.opusid9822de
ubs.publikation.sourceComputational and mathematical methods in medicine (2013), article ID 570878. URL http://dx.doi.org/10.1155/2013/570878de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:15 Fakultätsübergreifend / Sonstige Einrichtung

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Schmitt2013.pdf540,61 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.