Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-8839
Full metadata record
DC FieldValueLanguage
dc.contributorRecogNice-Teamde
dc.contributor.authorWulffen, Joachim von-
dc.contributor.authorSawodny, Oliver-
dc.contributor.authorFeuer, Ronny-
dc.date.accessioned2016-08-19T09:47:33Z-
dc.date.available2016-08-19T09:47:33Z-
dc.date.issued2016de
dc.identifier.issn1932-6203-
dc.identifier.other476321751de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/8856-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-88568de
dc.identifier.urihttp://dx.doi.org/10.18419/opus-8839-
dc.description.abstractThe facultative anaerobic bacterium Escherichia coli is frequently forced to adapt to changing environmental conditions. One important determinant for metabolism is the availability of oxygen allowing a more efficient metabolism. Especially in large scale bioreactors, the distribution of oxygen is inhomogeneous and individual cells encounter frequent changes. This might contribute to observed yield losses during process upscaling. Short-term gene expression data exist of an anaerobic E. coli batch culture shifting to aerobic conditions. The data reveal temporary upregulation of genes that are less efficient in terms of energy conservation than the genes predicted by conventional flux balance analyses. In this study, we provide evidence for a positive correlation between metabolic fluxes and gene expression. We then hypothesize that the more efficient enzymes are limited by their low expression, restricting flux through their reactions. We define a demand that triggers expression of the demanded enzymes that we explicitly include in our model. With these features we propose a method, demand-directed dynamic flux balance analysis, dddFBA, bringing together elements of several previously published methods. The introduction of additional flux constraints proportional to gene expression provoke a temporary demand for less efficient enzymes, which is in agreement with the transient upregulation of these genes observed in the data. In the proposed approach, the applied objective function of growth rate maximization together with the introduced constraints triggers expression of metabolically less efficient genes. This finding is one possible explanation for the yield losses observed in large scale bacterial cultivations where steady oxygen supply cannot be warranted.en
dc.language.isoende
dc.relation.uri10.1371/journal.pone.0158711de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc570de
dc.titleTransition of an anaerobic Escherichia coli culture to aerobiosis: balancing mRNA and protein levels in a demand-directed dynamic flux balance analysisen
dc.typearticlede
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.institutInstitut für Systemdynamikde
ubs.publikation.seiten17de
ubs.publikation.sourcePLOS ONE 11 (2016), Nr. 7, e0158711de
ubs.publikation.typZeitschriftenartikelde
Appears in Collections:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Files in This Item:
File Description SizeFormat 
von Wulffen, Sawodny, Feuer - 2016 - Transition of an Anaerobic Escherichia coli Culture to Aerobiosis Balancing mRNA and Protein Levels.PDFResearch article1,81 MBAdobe PDFView/Open
journal.pone.0158711.s001.PDFSupporting information 179,41 kBAdobe PDFView/Open
journal.pone.0158711.s002.PDFSupporting information 273,88 kBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.