Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-8892
Authors: Ackermann, Thomas
Neuhaus, Raphael
Roth, Siegmar
Title: The effect of rod orientation on electrical anisotropy in silver nanowire networks for ultra-transparent electrodes
Issue Date: 2016
metadata.ubs.publikation.typ: Zeitschriftenartikel
metadata.ubs.publikation.seiten: 9, 9
metadata.ubs.publikation.source: Scientific reports 6 (2016), Nr. 34289
URI: http://elib.uni-stuttgart.de/handle/11682/8909
http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-89093
http://dx.doi.org/10.18419/opus-8892
ISSN: 2045-2322
metadata.ubs.bemerkung.extern: T.A. thanks the German Research Foundation (Deutsche Forschungsgemeinschaft - DFG) for funding the Graduate School of Excellence in advanced Manufacturing Engineering (GSaME) at the University of Stuttgart. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Abstract: Two-dimensional networks made of metal nanowires are excellent paradigms for the experimental observation of electrical percolation caused by continuous jackstraw-like physical pathways. Such systems became very interesting as alternative material in transparent electrodes, which are fundamental components in display devices. This work presents the experimental characterization of low-haze and ultra-transparent electrodes based on silver nanowires. The films are created by dip-coating, a feasible and scalable liquid film coating technique. We have found dominant alignment of the silver nanowires in withdrawal direction. The impact of this structural anisotropy on electrical anisotropy becomes more pronounced for low area coverage. The rod alignment does not influence the technical usability of the films as significant electrical anisotropy occurs only at optical transmission higher than 99 %. For films with lower transmission, electrical anisotropy becomes negligible. In addition to the experimental work, we have carried out computational studies in order to explain our findings further and compare them to our experiments and previous literature. This paper presents the first experimental observation of electrical anisotropy in two-dimensional silver nanowire networks close at the percolation threshold.
Appears in Collections:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Files in This Item:
File Description SizeFormat 
Ackermann_2016_Sci_Rep.pdfArticle1,5 MBAdobe PDFView/Open
Ackermann_2016_Sci_Rep_SI.pdfSupporting information5,5 MBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.