Accelerating ab initio melting property calculations with machine learning : application to the high entropy alloy TaVCrW

dc.contributor.authorZhu, Li-Fang
dc.contributor.authorKörmann, Fritz
dc.contributor.authorChen, Qing
dc.contributor.authorSelleby, Malin
dc.contributor.authorNeugebauer, Jörg
dc.contributor.authorGrabowski, Blazej
dc.date.accessioned2025-07-16T07:52:53Z
dc.date.issued2024
dc.date.updated2025-01-27T15:58:07Z
dc.description.abstractMelting properties are critical for designing novel materials, especially for discovering high-performance, high-melting refractory materials. Experimental measurements of these properties are extremely challenging due to their high melting temperatures. Complementary theoretical predictions are, therefore, indispensable. One of the most accurate approaches for this purpose is the ab initio free-energy approach based on density functional theory (DFT). However, it generally involves expensive thermodynamic integration using ab initio molecular dynamic simulations. The high computational cost makes high-throughput calculations infeasible. Here, we propose a highly efficient DFT-based method aided by a specially designed machine learning potential. As the machine learning potential can closely reproduce the ab initio phase-space distribution, even for multi-component alloys, the costly thermodynamic integration can be fully substituted with more efficient free energy perturbation calculations. The method achieves overall savings of computational resources by 80% compared to current alternatives. We apply the method to the high-entropy alloy TaVCrW and calculate its melting properties, including the melting temperature, entropy and enthalpy of fusion, and volume change at the melting point. Additionally, the heat capacities of solid and liquid TaVCrW are calculated. The results agree reasonably with the CALPHAD extrapolated values.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.description.sponsorshipEuropean Research Council
dc.identifier.issn2057-3960
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-168020de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16802
dc.identifier.urihttps://doi.org/10.18419/opus-16783
dc.language.isoen
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/865855
dc.relation.uridoi:10.1038/s41524-024-01464-7
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc660
dc.titleAccelerating ab initio melting property calculations with machine learning : application to the high entropy alloy TaVCrWen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetChemie
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutInstitut für Materialwissenschaft
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.noppnyesde
ubs.publikation.seiten11
ubs.publikation.sourcenpj computational materials 10 (2024), No. 274
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
41524_2024_Article_1464.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: