An empirical study of Linespots : a novel past‐fault algorithm

dc.contributor.authorScholz, Maximilian
dc.contributor.authorTorkar, Richard
dc.date.accessioned2024-08-21T10:41:27Z
dc.date.available2024-08-21T10:41:27Z
dc.date.issued2021de
dc.date.updated2023-11-14T02:57:47Z
dc.description.abstractThis paper proposes the novel past‐faults fault prediction algorithm Linespots, based on the Bugspots algorithm. We analyse the predictive performance and runtime of Linespots compared with Bugspots with an empirical study using the most significant self‐built dataset as of now, including high‐quality samples for validation. As a novelty in fault prediction, we use Bayesian data analysis and Directed Acyclic Graphs to model the effects. We found consistent improvements in the predictive performance of Linespots over Bugspots for all seven evaluation metrics. We conclude that Linespots should be used over Bugspots in all cases where no real‐time performance is necessary.en
dc.identifier.issn0960-0833
dc.identifier.issn1099-1689
dc.identifier.other1899404139
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-148722de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14872
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14853
dc.language.isoende
dc.relation.uridoi:10.1002/stvr.1787de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleAn empirical study of Linespots : a novel past‐fault algorithmen
dc.typearticlede
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten19de
ubs.publikation.sourceSoftware testing, verification and reliability 31 (2021), No. e1787de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
STVR_STVR1787.pdf
Size:
2.37 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: