Distributed cooperative deep transfer learning for industrial image recognition

dc.contributor.authorMaschler, Benjamin
dc.contributor.authorKamm, Simon
dc.contributor.authorNasser, Jazdi
dc.contributor.authorWeyrich, Michael
dc.date.accessioned2020-06-08T07:55:23Z
dc.date.available2020-06-08T07:55:23Z
dc.date.issued2020de
dc.description.abstractIn this paper, a novel light-weight incremental class learning algorithm for live image recognition is presented. It features a dual memory architecture and is capable of learning formerly unknown classes as well as conducting its learning across multiple instances at multiple locations without storing any images. In addition to tests on the ImageNet dataset, a prototype based upon a Raspberry Pi and a webcam is used for further evaluation: The proposed algorithm successfully allows for the performant execution of image classification tasks while learning new classes at several sites simultaneously, thereby enabling its application to various industry use cases, e.g. predictive maintenance or self-optimization.en
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-108998de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10899
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10882
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.subject.ddc620de
dc.subject.ddc621.3de
dc.titleDistributed cooperative deep transfer learning for industrial image recognitionen
dc.typepreprintde
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Automatisierungstechnik und Softwaresystemede
ubs.publikation.noppnyesde
ubs.publikation.seiten6de
ubs.publikation.typPreprintde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Distributed Cooperative Deep Transfer Learning for Industrial Image Recognition.pdf
Size:
519.23 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: