Machine learning and Monte Carlo based data analysis methods in cosmic dust research

dc.contributor.advisorSrama, Ralf (Priv.-Doz. Dr.-Ing.)
dc.contributor.authorAlbin, Thomas
dc.date.accessioned2019-07-19T08:40:56Z
dc.date.available2019-07-19T08:40:56Z
dc.date.issued2019de
dc.description.abstractThis work applies miscellaneous algorithms from the fields Machine Learning and Computational Numerics on the research field Cosmic Dust. The task is to determine the scientific and technical potential of using different methods. Here, the methods are applied on two different projects: the meteor camera system Canary Island Long-Baseline Observatory (CILBO) and the Cassini in-situ dust telescope Cosmic-Dust-Analyzer (CDA).en
dc.identifier.other1669486192
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-104716de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10471
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10454
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc520de
dc.titleMachine learning and Monte Carlo based data analysis methods in cosmic dust researchen
dc.typedoctoralThesisde
ubs.dateAccepted2019-04-01
ubs.fakultaetLuft- und Raumfahrttechnik und Geodäsiede
ubs.institutInstitut für Raumfahrtsystemede
ubs.publikation.seitenxx, 246de
ubs.publikation.typDissertationde
ubs.thesis.grantorLuft- und Raumfahrttechnik und Geodäsiede

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Albin_Dissertation_2019a.pdf
Size:
30.19 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: