Design of frequency-converting monolithic integrated circuits for millimeter-wave applications

Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This thesis focuses on how to efficiently utilize the low terahertz spectrum in the frequency range from 220 to 325 GHz, also called H-band. This work presents an introduction on several techniques necessary for designing frequency-converting monolithic millimeter-wave integrated circuits for this frequency range. Six different frequency-converter MMICs in a 35 nm gate-length InGaAs mHEMT technology are presented: a nonlinear resistance up- and down-converter, a dual-gate up and down-converter, a gate-pumped transconductance up-converter and a half Gilbert cell up-converter. Each design is explained in detail, their advantages and their disadvantages are evaluated. Three examples will be given where a selection of the frequency-converter architectures are integrated with other functional stages like frequency multipliers and amplifiers to form a millimeter-wave transceiver: a highly linear FMCW radar receiver with a 50 GHz bandwidth, a heterodyne communication receiver facilitating multi-channel transmissions with carrier aggregation at W-band and a homodyne communication receiver with an integrated antenna for low-cost assembly on a PCB. Thereby, this thesis provides insight into the design considerations of terahertz frequency converters, the trade-off of different circuit architectures and topologies for certain applications, the obstacles that can occur during their development and approaches to overcome them.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By