Determination of the thermally induced focal shift of processing optics for ultrafast lasers with average powers of up to 525 W
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The continuous increase of the average laser power of ultrafast lasers is a challenge with respect to the thermal load of the processing optics. The power which is absorbed in an optical element leads to a temperature increase, temperature gradients, changing refractive index and shape, and finally causes distortions of the transmitted beam. In a first-order approximation this results in a change of the focal position, which may lead to an uncontrolled change of the laser machining process. The present study reports on investigations on the focal shift induced in thin plano-convex lenses by a high-power ultra-short pulsed laser with an average laser power of up to 525 W. The focal shift was determined for lenses made of different materials (N-BK7, fused silica) and with different coatings (un-coated, broadband coating, specific wavelength coating).