Coupled electrohydrodynamic and thermocapillary instability of multi-phase flows using an incompressible smoothed particle hydrodynamics method

dc.contributor.authorAlmasi, Fatemeh
dc.contributor.authorHopp-Hirschler, Manuel
dc.contributor.authorHadjadj, Abdellah
dc.contributor.authorNieken, Ulrich
dc.contributor.authorSafdari Shadloo, Mostafa
dc.date.accessioned2022-12-19T09:12:10Z
dc.date.available2022-12-19T09:12:10Z
dc.date.issued2022
dc.date.updated2022-06-21T15:56:18Z
dc.description.abstractThis paper concerns the study of coupled effects of electrohydrodynamic (EHD) and thermocapillary (TC) on the dynamic behaviour of a single liquid droplet. An incompressible Smoothed Particle Hydrodynamic (ISPH) multiphase model is used to simulate EHD-TC driven flows. The complex hydrodynamic interactions are modeled using the continuum surface force (CSF) method, in which the gradient of the interfacial tension and the Marangoni forces are calculated with an approximated error or 0.014% in the calculation of Marangoni force compared to the analytical solutions which is a significant improvement in comparison with previous SPH simulation studies, under the assumption that the thermocapillarity generates sufficiently large stress to allow droplet migration, while the electrohydrodynamic phenomena influences the droplet morphology depending on the electrical and thermal ratios of the droplet and the ambient fluid. This study shows that, when applying a vertical electric field and thermal gradient, the droplet starts to stretch horizontally towards a break-up condition at a high rate of electrical permitivity. The combined effect of thermal gradient and electric field tends to push further the droplet towards the break-up regime. When the thermal gradient and the electric field vector are orthogonal, results show that the droplet deformation would take place more slowly and the Marangoni forces cause the droplet to migrate, while the stretching in the direction of the electric field is not seen to be as strong as in the first case.en
dc.identifier.issn1996-1073
dc.identifier.other1830578286
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-126045de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12604
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12585
dc.language.isoende
dc.relation.uridoi:10.3390/en15072576de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc621.3de
dc.subject.ddc660de
dc.titleCoupled electrohydrodynamic and thermocapillary instability of multi-phase flows using an incompressible smoothed particle hydrodynamics methoden
dc.typearticlede
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Chemische Verfahrenstechnikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten21de
ubs.publikation.sourceEnergies 15 (2022), No. 2576de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
energies-15-02576.pdf
Size:
2.9 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Plain Text
Description: