Improved approximation schemes for the restricted shortest path problem

dc.contributor.authorHolzmüller, David
dc.date.accessioned2017-12-19T09:54:18Z
dc.date.available2017-12-19T09:54:18Z
dc.date.issued2016de
dc.description.abstractIn this thesis we present several variants of an approximation scheme for the restricted shortest path problem. This problem concerns finding a shortest path with respect to one criterion while not exceeding a length bound with respect to another criterion. After formally introducing the problem, we describe the approximation scheme by Lorenz and Raz. Our algorithm then introduces additional steps to reduce the runtime complexity from O(|E|n(1/epsilon + log log n)) to O(|E|n(1/epsilon + \log \log \log n)). A variant of this algorithm yields a complexity of O(|E|n(1/epsilon + (n log n) / m)), which is a further improvement for sufficiently dense graphs. Furthermore, a slight modification leads to an O(|E|n(1/epsilon + 1))-algorithm for directed acyclic graphs, providing an arguably easier algorithm than the algorithm proposed by Ergun et al.en
dc.identifier.other499774604
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-94595de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/9459
dc.identifier.urihttp://dx.doi.org/10.18419/opus-9442
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleImproved approximation schemes for the restricted shortest path problemen
dc.typebachelorThesisde
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Formale Methoden der Informatikde
ubs.publikation.seiten26de
ubs.publikation.typAbschlussarbeit (Bachelor)de

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Improved approximation schemes for the restricted shortest path problem.pdf
Size:
686.95 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: