Thin organic‐inorganic anti‐fouling hybrid‐films for microreactor components

dc.contributor.authorNeßlinger, Vanessa
dc.contributor.authorWelzel, Stefan
dc.contributor.authorRieker, Florian
dc.contributor.authorMeinderink, Dennis
dc.contributor.authorNieken, Ulrich
dc.contributor.authorGrundmeier, Guido
dc.date.accessioned2023-09-29T09:24:52Z
dc.date.available2023-09-29T09:24:52Z
dc.date.issued2022de
dc.date.updated2023-04-19T21:59:06Z
dc.description.abstractDeposit formation and fouling in reactors for polymer production and processing especially in microreactors is a well‐known phenomenon. Despite the flow and pressure loss optimized static mixers, fouling occurs on the surfaces of the mixer elements. To improve the performance of such parts even further, stainless steel substrates are coated with ultra‐thin films which have low surface energy, good adhesion, and high durability. Perfluorinated organosilane (FOTS) films deposited via chemical vapor deposition (CVD) are compared with FOTS containing zirconium oxide sol‐gel films regarding the prevention of deposit formation and fouling during polymerization processes in microreactors. Both film structures led to anti‐adhesive properties of microreactor component surfaces during aqueous poly(vinylpyrrolidone) (PVP) synthesis. To determine the morphology and surface chemistry of the coatings, different characterization methods such as X‐ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy as well as microscopic methods such as field‐emission scanning electron microscopy (FE‐SEM) and atomic force microscopy (AFM) are applied. The surface free energy and wetting properties are analyzed by means of contact angle measurements. The application of thin film‐coated mixing elements in a microreactor demonstrates a significant lowering in pressure increase caused by a reduced deposit formation.en
dc.description.sponsorshipGerman Federal Ministry for Economic Affairs and Climate Actionde
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn1862-8338
dc.identifier.issn1862-832X
dc.identifier.other1861138148
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-135531de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13553
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13534
dc.language.isoende
dc.relation.uridoi:10.1002/mren.202200043de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc540de
dc.titleThin organic‐inorganic anti‐fouling hybrid‐films for microreactor componentsen
dc.typearticlede
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Chemische Verfahrenstechnikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten16de
ubs.publikation.sourceMacromolecular reaction engineering 17 (2023), No. 2200043de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
MREN_MREN202200043.pdf
Size:
6.35 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: