Assessing fatigue life cycles of material X10CrMoVNb9-1 through a combination of experimental and finite element analysis

dc.contributor.authorRahim, Mohammad Ridzwan Bin Abd
dc.contributor.authorSchmauder, Siegfried
dc.contributor.authorManurung, Yupiter H. P.
dc.contributor.authorBinkele, Peter
dc.contributor.authorDusza, Ján
dc.contributor.authorCsanádi, Tamás
dc.contributor.authorAhmad, Meor Iqram Meor
dc.contributor.authorMat, Muhd Faiz
dc.contributor.authorDogahe, Kiarash Jamali
dc.date.accessioned2024-05-15T15:05:17Z
dc.date.available2024-05-15T15:05:17Z
dc.date.issued2023de
dc.date.updated2024-04-25T13:23:57Z
dc.description.abstractThis paper uses a two-scale material modeling approach to investigate fatigue crack initiation and propagation of the material X10CrMoVNb9-1 (P91) under cyclic loading at room temperature. The Voronoi tessellation method was implemented to generate an artificial microstructure model at the microstructure level, and then, the finite element (FE) method was applied to identify different stress distributions. The stress distributions for multiple artificial microstructures was analyzed by using the physically based Tanaka-Mura model to estimate the number of cycles for crack initiation. Considering the prediction of macro-scale and long-term crack formation, the Paris law was utilized in this research. Experimental work on fatigue life with this material was performed, and good agreement was found with the results obtained in FE modeling. The number of cycles for fatigue crack propagation attains up to a maximum of 40% of the final fatigue lifetime with a typical value of 15% in many cases. This physically based two-scale technique significantly advances fatigue research, particularly in power plants, and paves the way for rapid and low-cost virtual material analysis and fatigue resistance analysis in the context of environmental fatigue applications.en
dc.description.sponsorshipPublic Service Department of Malaysiade
dc.description.sponsorshipGerman Research Foundation grant, “Open Access Publication Funding/2023-2024/University of Stuttgart”de
dc.identifier.issn2075-4701
dc.identifier.other1889320897
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-143952de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14395
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14376
dc.language.isoende
dc.relation.uridoi:10.3390/met13121947de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc530de
dc.subject.ddc620de
dc.titleAssessing fatigue life cycles of material X10CrMoVNb9-1 through a combination of experimental and finite element analysisen
dc.typearticlede
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Materialprüfung, Werkstoffkunde und Festigkeitslehrede
ubs.institutGraduate School of Excellence for Advanced Manufacturing Engineering (GSaME)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten17de
ubs.publikation.sourceMetals 13 (2023), No. 1947de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
metals-13-01947-v2.pdf
Size:
12.03 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: