Benchmarking the performance of portfolio optimization with QAOA

dc.contributor.authorBrandhofer, Sebastian
dc.contributor.authorBraun, Daniel
dc.contributor.authorDehn, Vanessa
dc.contributor.authorHellstern, Gerhard
dc.contributor.authorHüls, Matthias
dc.contributor.authorJi, Yanjun
dc.contributor.authorPolian, Ilia
dc.contributor.authorBhatia, Amandeep Singh
dc.contributor.authorWellens, Thomas
dc.date.accessioned2024-11-08T15:36:46Z
dc.date.available2024-11-08T15:36:46Z
dc.date.issued2022de
dc.date.updated2024-10-30T09:03:52Z
dc.description.abstractWe present a detailed study of portfolio optimization using different versions of the quantum approximate optimization algorithm (QAOA). For a given list of assets, the portfolio optimization problem is formulated as quadratic binary optimization constrained on the number of assets contained in the portfolio. QAOA has been suggested as a possible candidate for solving this problem (and similar combinatorial optimization problems) more efficiently than classical computers in the case of a sufficiently large number of assets. However, the practical implementation of this algorithm requires a careful consideration of several technical issues, not all of which are discussed in the present literature. The present article intends to fill this gap and thereby provides the reader with a useful guide for applying QAOA to the portfolio optimization problem (and similar problems). In particular, we will discuss several possible choices of the variational form and of different classical algorithms for finding the corresponding optimized parameters. Viewing at the application of QAOA on error-prone NISQ hardware, we also analyse the influence of statistical sampling errors (due to a finite number of shots) and gate and readout errors (due to imperfect quantum hardware). Finally, we define a criterion for distinguishing between ‘easy’ and ‘hard’ instances of the portfolio optimization problem.en
dc.description.sponsorshipMinisterium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württembergde
dc.identifier.issn1570-0755
dc.identifier.issn1573-1332
dc.identifier.other1909749842
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-152525de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15252
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15233
dc.language.isoende
dc.relation.uridoi:10.1007/s11128-022-03766-5de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc004de
dc.titleBenchmarking the performance of portfolio optimization with QAOAen
dc.typearticlede
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Technische Informatikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten27de
ubs.publikation.sourceQuantum information processing 22 (2023), No. 25de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s11128-022-03766-5.pdf
Size:
1.62 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: