A vibration-based test technique to evaluate the high-cycle fatigue life of thermal interface layers used in the electronic industry

dc.contributor.authorFezai, Alaa
dc.contributor.authorSharma, Anuj
dc.contributor.authorMüller-Hirsch, Wolfgang
dc.contributor.authorZimmermann, André
dc.date.accessioned2025-04-10T08:35:55Z
dc.date.issued2025
dc.description.abstractA testing method is developed to evaluate the acceleration- and strain-based fatigue life of a thermal interface layer in the high-cycle fatigue regime. The methodology adopts vibration-based fatigue testing, where adhesively bonded beams are excited at their resonant frequency under variable amplitude loading using an electrodynamic shaker. Fatigue failure is monitored through shifts in modal frequency and modal damping. Key findings include the identification of a 4% frequency shift as the failure criterion, corresponding to macro-delamination. The thickness of the thermal interface material influences acceleration-based fatigue life, decreasing by a factor of 0.2 when reduced from 0.3 mm to 0.15 mm and increasing by 5.5 when increased to 0.5 mm. Surface quality has a significant impact on both acceleration-based and strain-based fatigue curves. Beams from chemically etched aluminum–magnesium alloy specimens exhibit a sevenfold increase in fatigue life compared to beams from untreated printed circuit boards. Strain-based fatigue life increases with temperature, with a 0.2 reduction at -40°C and an eightfold increase at 100°C relative to 23°C. The first principal strain 𝜀1,rms is validated as a reliable local damage parameter, effectively characterizing fatigue behavior across varying TIM thicknesses.en
dc.identifier.issn2673-3161
dc.identifier.other1922865869
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-161410de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16141
dc.identifier.urihttps://doi.org/10.18419/opus-16122
dc.language.isoen
dc.relation.uridoi:10.3390/applmech6020023
dc.rightsCC-BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620
dc.titleA vibration-based test technique to evaluate the high-cycle fatigue life of thermal interface layers used in the electronic industryen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnik
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutInstitut für Mikrointegration
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.seiten28
ubs.publikation.sourceApplied mechanics 6 (2025), No. 23
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2025_Fezai-Sharma-Mueller-Zimmermann_A-Vibration-Based-Test-Technique-to-Evaluate-the-High-Cycle-Fatigue-Life-of-Thermal-Interface-Layers-Used-in-the-Electronic-Industry.pdf
Size:
5.96 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: