Power quality mitigation via smart demand-side management based on a genetic algorithm

dc.contributor.authorEisenmann, Adrian
dc.contributor.authorStreubel, Tim
dc.contributor.authorRudion, Krzysztof
dc.date.accessioned2022-11-09T12:41:16Z
dc.date.available2022-11-09T12:41:16Z
dc.date.issued2022
dc.date.updated2022-03-23T08:59:14Z
dc.description.abstractIn modern electrical grids, the number of nonlinear grid elements and actively controlled loads is rising. Maintaining the power quality will therefore become a challenging task. This paper presents a power quality mitigation method via smart demand-side management. The mitigation method is based on a genetic algorithm guided optimization for smart operational planning of the grid elements. The algorithm inherits the possibility to solve multiple, even competing, objectives. The objective function uses and translates the fitness functions of the genetic algorithm into a minimization or maximization problem, thus narrowing down the complexity of the addressed high cardinality optimization problem. The NSGA-II algorithm is used to obtain feasible solutions for the auto optimization of the demand-side management. A simplified industrial grid with five different machines is used as a case study to showcase the minimization of the harmonic distortion to normative limits for all time steps during a day at a specific grid node, while maintaining the productivity of the underlying industrial process.en
dc.identifier.issn1996-1073
dc.identifier.other1823796060
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-125221de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12522
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12503
dc.language.isoende
dc.relation.uridoi:10.3390/en15041492de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc621.3de
dc.titlePower quality mitigation via smart demand-side management based on a genetic algorithmen
dc.typearticlede
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Energieübertragung und Hochspannungstechnikde
ubs.publikation.seiten24de
ubs.publikation.sourceEnergies 15 (2022), No. 1492de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
energies-15-01492-v3.pdf
Size:
6.51 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Plain Text
Description: