Electron availability in CO2, CO and H2 mixtures constrains flux distribution, energy management and product formation in Clostridium ljungdahlii

dc.contributor.authorHermann, Maria
dc.contributor.authorTeleki, Attila
dc.contributor.authorWeitz, Sandra
dc.contributor.authorNiess, Alexander
dc.contributor.authorFreund, Andreas
dc.contributor.authorBengelsdorf, Frank R.
dc.contributor.authorTakors, Ralf
dc.date.accessioned2024-07-12T08:58:32Z
dc.date.available2024-07-12T08:58:32Z
dc.date.issued2020de
dc.date.updated2023-11-14T05:54:22Z
dc.description.abstractAcetogens such as Clostridium ljungdahlii can play a crucial role reducing the human CO2 footprint by converting industrial emissions containing CO2, CO and H2 into valuable products such as organic acids or alcohols. The quantitative understanding of cellular metabolism is a prerequisite to exploit the bacterial endowments and to fine-tune the cells by applying metabolic engineering tools. Studying the three gas mixtures CO2 + H2, CO and CO + CO2 + H2 (syngas) by continuously gassed batch cultivation experiments and applying flux balance analysis, we identified CO as the preferred carbon and electron source for growth and producing alcohols. However, the total yield of moles of carbon (mol-C) per electrons consumed was almost identical in all setups which underlines electron availability as the main factor influencing product formation. The Wood–Ljungdahl pathway (WLP) showed high flexibility by serving as the key NAD+ provider for CO2 + H2, whereas this function was strongly compensated by the transhydrogenase-like Nfn complex when CO was metabolized. Availability of reduced ferredoxin (Fdred) can be considered as a key determinant of metabolic control. Oxidation of CO via carbon monoxide dehydrogenase (CODH) is the main route of Fdred formation when CO is used as substrate, whereas Fdred is mainly regenerated via the methyl branch of WLP and the Nfn complex utilizing CO2 + H2. Consequently, doubled growth rates, highest ATP formation rates and highest amounts of reduced products (ethanol, 2,3-butanediol) were observed when CO was the sole carbon and electron source.en
dc.description.sponsorshipBundesministerium für Bildung und Forschungde
dc.identifier.issn1751-7915
dc.identifier.issn1751-7907
dc.identifier.other1895499372
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-146591de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14659
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14640
dc.language.isoende
dc.relation.uridoi:10.1111/1751-7915.13625de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc540de
dc.subject.ddc570de
dc.titleElectron availability in CO2, CO and H2 mixtures constrains flux distribution, energy management and product formation in Clostridium ljungdahliien
dc.typearticlede
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Bioverfahrenstechnikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten1831-1846de
ubs.publikation.sourceMicrobial biotechnology 13 (2020), S. 1831-1846de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
MBT2_MBT213625.pdf
Size:
1.81 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: