KGGLDM : Knowledge Graph Guided Diffusion Models for advanced learning

dc.contributor.authorGupta, Akshat
dc.date.accessioned2024-12-11T13:11:04Z
dc.date.available2024-12-11T13:11:04Z
dc.date.issued2024de
dc.description.abstractThis thesis explores a novel approach by bridging the gap of diffusion modeling and knowledge graphs, unveiling a potentially groundbreaking direction that serves as the central theme of this work. We propose incorporating knowledge graph guidance into LDM models to augment precise control over sample generation using domain conceptual knowledge.en
dc.identifier.other1912057581
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-154324de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15432
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15413
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleKGGLDM : Knowledge Graph Guided Diffusion Models for advanced learningen
dc.typemasterThesisde
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Maschinelle Sprachverarbeitungde
ubs.publikation.seiten101de
ubs.publikation.typAbschlussarbeit (Master)de

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Gupta_MSc_Knowledge_Graph_Guided_Latent_Diffusion_Models.pdf
Size:
11.76 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: