SUPREYES: SUPer resolution for EYES using implicit neural representation learning

dc.contributor.authorJiao, Chuhan
dc.contributor.authorHu, Zhiming
dc.contributor.authorBâce, Mihai
dc.contributor.authorBulling, Andreas
dc.date.accessioned2023-11-17T13:32:09Z
dc.date.available2023-11-17T13:32:09Z
dc.date.issued2023de
dc.description.abstractWe introduce SUPREYES - a novel self-supervised method to increase the spatio-temporal resolution of gaze data recorded using low(er)-resolution eye trackers. Despite continuing advances in eye tracking technology, the vast majority of current eye trackers - particularly mobile ones and those integrated into mobile devices - suffer from low-resolution gaze data, thus fundamentally limiting their practical usefulness. SUPREYES learns a continuous implicit neural representation from low-resolution gaze data to up-sample the gaze data to arbitrary resolutions. We compare our method with commonly used interpolation methods on arbitrary scale super-resolution and demonstrate that SUPREYES outperforms these baselines by a significant margin. We also test on the sample downstream task of gaze-based user identification and show that our method improves the performance of original low-resolution gaze data and outperforms other baselines. These results are promising as they open up a new direction for increasing eye tracking fidelity as well as enabling new gaze-based applications without the need for new eye tracking equipment.en
dc.identifier.isbn979-8-4007-0132-0
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-137776de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13777
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13758
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/HE/101072410de
dc.relation.uridoi:10.1145/3586183.3606780de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleSUPREYES: SUPer resolution for EYES using implicit neural representation learningen
dc.typeconferenceObjectde
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Visualisierung und Interaktive Systemede
ubs.konferenznameACM Symposium on User Interface Software and Technology (36th, 2023, San Francisco, Calif.)de
ubs.publikation.noppnyesde
ubs.publikation.sourceUIST '23 : proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology. New York, NY : ACM, 2023. - ISBN 979-8-4007-0132-0, Article no. 81de
ubs.publikation.typKonferenzbeitragde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
__SUPer_Resolution_for_EYES_Using_Implicit_Neural_Representation_Learning.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: