Unified model for laser doping of silicon from precursors

dc.contributor.authorHassan, Mohamed
dc.contributor.authorDahlinger, Morris
dc.contributor.authorKöhler, Jürgen R.
dc.contributor.authorZapf-Gottwick, Renate
dc.contributor.authorWerner, Jürgen H.
dc.date.accessioned2023-03-30T12:12:31Z
dc.date.available2023-03-30T12:12:31Z
dc.date.issued2021
dc.date.updated2021-05-03T18:10:07Z
dc.description.abstractLaser doping of silicon with the help of precursors is well established in photovoltaics. Upon illumination with the constant or pulsed laser beam, the silicon melts and doping atoms from the doping precursor diffuse into the melted silicon. With the proper laser parameters, after resolidification, the silicon is doped without any lattice defects. Depending on laser energy and on the kind of precursor, the precursor either melts or evaporates during the laser process. For high enough laser energies, even parts of the silicon’s surface evaporate. Here, we present a unified model and simulation program, which considers all these cases. We exemplify our model with experiments and simulations of laser doping from a boron oxide precursor layer. In contrast to previous models, we are able to predict not only the width and depth of the patterns on the deformed silicon surface but also the doping profiles over a wide range of laser energies. In addition, we also show that the diffusion of the boron atoms in the molten Si is boosted by a thermally induced convection in the silicon melt: the Gaussian intensity distribution of the laser beam increases the temperature-gradient-induced surface tension gradient, causing the molten Si to circulate by Marangoni convection. Laser pulse energy densities above H > 2.8 J/cm2 lead not only to evaporation of the precursor, but also to a partial evaporation of the molten silicon. Without considering the evaporation of Si, it is not possible to correctly predict the doping profiles for high laser energies. About 50% of the evaporated materials recondense and resolidify on the wafer surface. The recondensed material from each laser pulse forms a dopant source for the subsequent laser pulses.en
dc.description.sponsorshipDie Forschungs- und Entwicklungsaktivitäten des Bundesministeriums für Wirtschaft und Energie (BMWi)de
dc.identifier.issn1996-1944
dc.identifier.other184187891X
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-128865de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12886
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12867
dc.language.isoende
dc.relation.uridoi:10.3390/ma14092322de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc621.3de
dc.titleUnified model for laser doping of silicon from precursorsen
dc.typearticlede
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Photovoltaikde
ubs.publikation.seiten21de
ubs.publikation.sourceMaterials 14 (2021), No. 2322de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
materials-14-02322-v2.pdf
Size:
11.05 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Plain Text
Description: