Neuronale Wissensrepräsentation und antizipierende hierarchische Speicher

dc.contributor.authorWittmann, Ralfde
dc.date.accessioned2014-06-12de
dc.date.accessioned2016-03-31T08:01:18Z
dc.date.available2014-06-12de
dc.date.available2016-03-31T08:01:18Z
dc.date.issued2013de
dc.description.abstractNeurowissenschaftliche Erkenntnisse über Struktur und Funktion des Neokortex lassen eine Neuorientierung auf dem Gebiet der künstlichen neuronalen Netze ratsam erscheinen. Es gilt, seine tiefe und hierarchische Architektur, seine universelle Fähigkeit, nicht nur räumliche sondern simultan auch zeitliche Muster zu erkennen und zu antizipieren, technisch zu realisieren. Dabei spielt auch ein aktuelles Modell der neuronalen Wissensrepräsentation, Sparse Coding, eine wichtige Rolle. Neben Deep Learning-Netzen, sind auch hierarchisch-temporale Speicher (HTM) ein vielversprechender Ansatz auf diesem Gebiet. Lernalgorithmen für HTM werden vorgestellt und mit Hilfe der openHTM-Plattform, die eine frei verfügbare Version des kommerziellen Grok-Systems ist, erste Experimente durchgeführt.de
dc.description.abstractNeuroscientific insights into neocortical structure and function motivate reorientation in the field of artificial neural networks. It is desirable to seek technical solutions which exhibit its deep and hierarchical architecture and its universal ability to detect and anticipate spatio-temporal patterns. A current model of neural knowledge representation, sparse coding, is instrumental in achieving this goal. Among other concepts like deep learning, hierarchical-temporal memory (HTM) is a promising approach. Learning algorithms for HTM are discussed, and simple experiments with the openHTM-platform, a free and open source version of the commercial Grok system, are presented.en
dc.identifier.other408038411de
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-93289de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/3310
dc.identifier.urihttp://dx.doi.org/10.18419/opus-3293
dc.language.isodede
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleNeuronale Wissensrepräsentation und antizipierende hierarchische Speicherde
dc.typemasterThesisde
ubs.fakultaetFakultät Informatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Parallele und Verteilte Systemede
ubs.opusid9328de
ubs.publikation.typAbschlussarbeit (Diplom)de

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
DIP_3294.pdf
Size:
10.33 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
935 B
Format:
Plain Text
Description: