Hybrid spintronic materials from conducting polymers with molecular quantum bits

dc.contributor.authorKern, Michal
dc.contributor.authorTesi, Lorenzo
dc.contributor.authorNeusser, David
dc.contributor.authorRußegger, Nadine
dc.contributor.authorWinkler, Mario
dc.contributor.authorAllgaier, Alexander
dc.contributor.authorGross, Yannic M.
dc.contributor.authorBechler, Stefan
dc.contributor.authorFunk, Hannes S.
dc.contributor.authorChang, Li‐Te
dc.contributor.authorSchulze, Jörg
dc.contributor.authorLudwigs, Sabine
dc.contributor.authorSlageren, Joris van
dc.date.accessioned2024-06-04T08:37:14Z
dc.date.available2024-06-04T08:37:14Z
dc.date.issued2020de
dc.date.updated2023-11-14T05:52:04Z
dc.description.abstractHybrid materials consisting of organic semiconductors and molecular quantum bits promise to provide a novel platform for quantum spintronic applications. However, investigations of such materials, elucidating both the electrical and quantum dynamical properties of the same material have never been reported. Here the preparation of hybrid materials consisting of conducting polymers and molecular quantum bits is reported. Organic field‐effect transistor measurements demonstrate that the favorable electrical properties are preserved in the presence of the qubits. Chemical doping introduces charge carriers into the material, and variable‐temperature charge transport measurements reveal the existence of mobile charge carriers at temperatures as low as 15 K. Importantly, quantum coherence of the qubit is shown to be preserved up to temperatures of at least 30 K, that is, in the presence of mobile charge carriers. These results pave the way for employing such hybrid materials in novel molecular quantum spintronic architectures.en
dc.description.sponsorshipEuropean Union's Horizon 2020 Research and Innovation Programmede
dc.description.sponsorshipCenter for Integrated Quantum Science and Technology (IQST)de
dc.description.sponsorshipCarl Zeiss Foundationde
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn1616-3028
dc.identifier.issn1616-301X
dc.identifier.other1891237683
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-144698de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14469
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14450
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/767227de
dc.relation.uridoi:10.1002/adfm.202006882de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc660de
dc.subject.ddc670de
dc.titleHybrid spintronic materials from conducting polymers with molecular quantum bitsen
dc.typearticlede
ubs.fakultaetChemiede
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.institutInstitut für Physikalische Chemiede
ubs.institutInstitut für Polymerchemiede
ubs.institutInstitut für Halbleitertechnikde
ubs.institutZentrum für integrierte Quantenwissenschaft und -technologie (IQST)de
ubs.publikation.seiten10de
ubs.publikation.sourceAdvanced functional materials 31 (2021), No. 2006882de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
ADFM_ADFM202006882.pdf
Size:
2.32 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: