Model-based biomechanical exoskeleton concept optimization for a representative lifting task in logistics

dc.contributor.authorSchiebl, Jonas
dc.contributor.authorTröster, Mark
dc.contributor.authorIdoudi, Wiem
dc.contributor.authorGneiting, Elena
dc.contributor.authorSpies, Leon
dc.contributor.authorMaufroy, Christophe
dc.contributor.authorSchneider, Urs
dc.contributor.authorBauernhansl, Thomas
dc.date.accessioned2024-03-05T09:10:52Z
dc.date.available2024-03-05T09:10:52Z
dc.date.issued2022de
dc.date.updated2023-11-14T00:09:10Z
dc.description.abstractOccupational exoskeletons are a promising solution to prevent work-related musculoskeletal disorders (WMSDs). However, there are no established systems that support heavy lifting to shoulder height. Thus, this work presents a model-based analysis of heavy lifting activities and subsequent exoskeleton concept optimization. Six motion sequences were captured in the laboratory for three subjects and analyzed in multibody simulations with respect to muscle activities (MAs) and joint forces (JFs). The most strenuous sequence was selected and utilized in further simulations of a human model connected to 32 exoskeleton concept variants. Six simulated concepts were compared concerning occurring JFs and MAs as well as interaction loads in the exoskeleton arm interfaces. Symmetric uplifting of a 21 kg box from hip to shoulder height was identified as the most strenuous motion sequence with highly loaded arms, shoulders, and back. Six concept variants reduced mean JFs (spine: >70%, glenohumeral joint: >69%) and MAs (back: >63%, shoulder: >59% in five concepts). Parasitic loads in the arm bracing varied strongly among variants. An exoskeleton design was identified that effectively supports heavy lifting, combining high musculoskeletal relief and low parasitic loads. The applied workflow can help developers in the optimization of exoskeletons.en
dc.description.sponsorshipBundeswehr (Armed Forces of Germany)de
dc.identifier.issn1660-4601
dc.identifier.issn1661-7827
dc.identifier.other1883039479
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-140186de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14018
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13999
dc.language.isoende
dc.relation.uridoi:10.3390/ijerph192315533de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc330de
dc.subject.ddc620de
dc.titleModel-based biomechanical exoskeleton concept optimization for a representative lifting task in logisticsen
dc.typearticlede
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.institutInstitut für Industrielle Fertigung und Fabrikbetriebde
ubs.institutFraunhofer Institut für Produktionstechnik und Automatisierung (IPA)de
ubs.publikation.seiten22de
ubs.publikation.sourceInternational journal of environmental research and public health 19 (2022), No. 15533de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
ijerph-19-15533.pdf
Size:
5.93 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: