A systematic selection process of machine learning cloud services for manufacturing SMEs

dc.contributor.authorKaymakci, Can
dc.contributor.authorWenninger, Simon
dc.contributor.authorPelger, Philipp
dc.contributor.authorSauer, Alexander
dc.date.accessioned2022-11-09T12:41:18Z
dc.date.available2022-11-09T12:41:18Z
dc.date.issued2022
dc.date.updated2022-02-08T13:09:26Z
dc.description.abstractSmall and medium-sized enterprises (SMEs) in manufacturing are increasingly facing challenges of digital transformation and a shift towards cloud-based solutions to leveraging artificial intelligence (AI) or, more specifically, machine learning (ML) services. Although literature covers a variety of frameworks related to the adaptation of cloud solutions, cloud-based ML solutions in SMEs are not yet widespread, and an end-to-end process for ML cloud service selection is lacking. The purpose of this paper is to present a systematic selection process of ML cloud services for manufacturing SMEs. Following a design science research approach, including a literature review and qualitative expert interviews, as well as a case study of a German manufacturing SME, this paper presents a four-step process to select ML cloud services for SMEs based on an analytic hierarchy process. We identified 24 evaluation criteria for ML cloud services relevant for SMEs by merging knowledge from manufacturing, cloud computing, and ML with practical aspects. The paper provides an interdisciplinary, hands-on, and easy-to-understand decision support system that lowers the barriers to the adoption of ML cloud services and supports digital transformation in manufacturing SMEs. The application in other practical use cases to support SMEs and simultaneously further development is advocated.de
dc.identifier.issn2073-431X
dc.identifier.other1823528031
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-125281de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12528
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12509
dc.language.isoende
dc.relation.uridoi:10.3390/computers11010014de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc621.3de
dc.titleA systematic selection process of machine learning cloud services for manufacturing SMEsde
dc.typearticlede
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.institutInstitut für Energieeffizienz in der Produktionde
ubs.institutFraunhofer Institut für Produktionstechnik und Automatisierung (IPA)de
ubs.publikation.seiten19de
ubs.publikation.sourceComputers 11 (2022), No. 14de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
computers-11-00014.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Plain Text
Description: