FFT-based homogenization at finite strains using composite boxels (ComBo)

dc.contributor.authorKeshav, Sanath
dc.contributor.authorFritzen, Felix
dc.contributor.authorKabel, Matthias
dc.date.accessioned2024-11-22T09:46:55Z
dc.date.available2024-11-22T09:46:55Z
dc.date.issued2022de
dc.date.updated2024-11-02T08:44:27Z
dc.description.abstractComputational homogenization is the gold standard for concurrent multi-scale simulations (e.g., FE2) in scale-bridging applications. Often the simulations are based on experimental and synthetic material microstructures represented by high-resolution 3D image data. The computational complexity of simulations operating on such voxel data is distinct. The inability of voxelized 3D geometries to capture smooth material interfaces accurately, along with the necessity for complexity reduction, has motivated a special local coarse-graining technique called composite voxels (Kabel et al. Comput Methods Appl Mech Eng 294: 168-188, 2015). They condense multiple fine-scale voxels into a single voxel, whose constitutive model is derived from the laminate theory. Our contribution generalizes composite voxels towards composite boxels (ComBo) that are non-equiaxed, a feature that can pay off for materials with a preferred direction such as pseudo-uni-directional fiber composites. A novel image-based normal detection algorithm is devised which (i) allows for boxels in the firsts place and (ii) reduces the error in the phase-averaged stresses by around 30% against the orientation cf. Kabel et al. (Comput Methods Appl Mech Eng 294: 168-188, 2015) even for equiaxed voxels. Further, the use of ComBo for finite strain simulations is studied in detail. An efficient and robust implementation is proposed, featuring an essential selective back-projection algorithm preventing physically inadmissible states. Various examples show the efficiency of ComBo against the original proposal by Kabel et al. (Comput Methods Appl Mech Eng 294: 168-188, 2015) and the proposed algorithmic enhancements for nonlinear mechanical problems. The general usability is emphasized by examining various Fast Fourier Transform (FFT) based solvers, including a detailed description of the Doubly-Fine Material Grid (DFMG) for finite strains. All of the studied schemes benefit from the ComBo discretization.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.identifier.issn1432-0924
dc.identifier.issn0178-7675
dc.identifier.other1912801345
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-153107de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15310
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15291
dc.language.isoende
dc.relation.uridoi:10.1007/s00466-022-02232-4de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc510de
dc.subject.ddc620de
dc.titleFFT-based homogenization at finite strains using composite boxels (ComBo)en
dc.typearticlede
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten191-212de
ubs.publikation.sourceComputational mechanics 71 (2022), S. 191-212de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s00466-022-02232-4.pdf
Size:
5.67 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: