Improved a posteriori error bounds for reduced port-Hamiltonian systems

dc.contributor.authorRettberg, Johannes
dc.contributor.authorWittwar, Dominik
dc.contributor.authorBuchfink, Patrick
dc.contributor.authorHerkert, Robin
dc.contributor.authorFehr, Jörg
dc.contributor.authorHaasdonk, Bernard
dc.date.accessioned2025-05-28T14:44:58Z
dc.date.issued2024
dc.date.updated2025-01-24T13:49:15Z
dc.description.abstractProjection-based model order reduction of dynamical systems usually introduces an error between the high-fidelity model and its counterpart of lower dimension. This unknown error can be bounded by residual-based methods, which are typically known to be highly pessimistic in the sense of largely overestimating the true error. This work applies two improved error bounding techniques, namely (a)  a hierarchical error bound and (b)  an error bound based on an auxiliary linear problem , to the case of port-Hamiltonian systems. The approaches rely on a secondary approximation of (a) the dynamical system and (b) the error system. In this paper, these methods are adapted to port-Hamiltonian systems. The mathematical relationship between the two methods is discussed both theoretically and numerically. The effectiveness of the described methods is demonstrated using a challenging three-dimensional port-Hamiltonian model of a classical guitar with fluid–structure interaction.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.identifier.issn1572-9044
dc.identifier.issn1019-7168
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-164830de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16483
dc.identifier.urihttps://doi.org/10.18419/opus-16464
dc.language.isoen
dc.relation.uridoi:10.1007/s10444-024-10195-8
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc624
dc.titleImproved a posteriori error bounds for reduced port-Hamiltonian systemsen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnik
ubs.fakultaetMathematik und Physik
ubs.institutInstitut für Technische und Numerische Mechanik
ubs.institutInstitut für Angewandte Analysis und numerische Simulation
ubs.publikation.noppnyesde
ubs.publikation.seiten24
ubs.publikation.sourceAdvances in computational mathematics 50 (2024), No. 100
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10444_2024_Article_10195.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: