Design of fiber-composite/metal-hybrid structures made by multi-stage coreless filament winding

dc.contributor.authorMindermann, Pascal
dc.contributor.authorMüllner, Ralf
dc.contributor.authorDieringer, Erik
dc.contributor.authorOcker, Christof
dc.contributor.authorKlink, René
dc.contributor.authorMerkel, Markus
dc.contributor.authorGresser, Götz T.
dc.date.accessioned2022-11-09T12:41:21Z
dc.date.available2022-11-09T12:41:21Z
dc.date.issued2022
dc.date.updated2022-03-23T02:32:08Z
dc.description.abstractThe methods presented in this study assist in fabricating load-bearing structures with high mass-specific mechanical performance at various scales. Possible applications include primary and secondary structures in engineering, architecture, automotive, or aerospace industries.Additive manufacturing processes, such as coreless filament winding with fiber composites or laser powder bed fusion with metals, can produce lightweight structures while exhibiting process-specific characteristics. Those features must be accounted for to successfully combine multiple processes and materials. This hybrid approach can merge the different benefits to realize mass savings in load-bearing structures with high mass-specific stiffnesses, strict geometrical tolerances, and machinability. In this study, a digital tool for coreless filament winding was developed to support all project phases by natively capturing the process-specific characteristics. As a demonstration, an aluminum base plate was stiffened by a coreless wound fiber-composite structure, which was attached by additively manufactured metallic winding pins. The geometrical deviations and surface roughness of the pins were investigated to describe the interface. The concept of multi-stage winding was introduced to reduce fiber–fiber interaction. The demonstration example exhibited an increase in mass-specific component stiffness by a factor of 2.5 with only 1/5 of the mass of a state-of-the-art reference. The hybrid design approach holds great potential to increase performance if process-specific features, interfaces, material interaction, and processes interdependencies are aligned during the digitized design phase.en
dc.identifier.issn2076-3417
dc.identifier.other1823533256
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-125387de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12538
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12519
dc.language.isoende
dc.relation.uridoi:10.3390/app12052296de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleDesign of fiber-composite/metal-hybrid structures made by multi-stage coreless filament windingen
dc.typearticlede
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.institutInstitut für Textil- und Fasertechnologiende
ubs.institutInstitut für Industrielle Fertigung und Fabrikbetriebde
ubs.institutDeutsche Institute für Textil- und Faserforschung Denkendorf (DITF)de
ubs.institutFraunhofer Institut für Produktionstechnik und Automatisierung (IPA)de
ubs.publikation.seiten26de
ubs.publikation.sourceApplied sciences 12 (2022), No. 2296de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
applsci-12-02296-v2.pdf
Size:
90.95 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Plain Text
Description: