High-accuracy thermodynamic properties to the melting point from ab initio calculations aided by machine-learning potentials
dc.contributor.author | Jung, Jong Hyun | |
dc.contributor.author | Srinivasan, Prashanth | |
dc.contributor.author | Forslund, Axel | |
dc.contributor.author | Grabowski, Blazej | |
dc.date.accessioned | 2023-09-13T07:53:59Z | |
dc.date.available | 2023-09-13T07:53:59Z | |
dc.date.issued | 2023 | de |
dc.description.abstract | Accurate prediction of thermodynamic properties requires an extremely accurate representation of the free-energy surface. Requirements are twofold - first, the inclusion of the relevant finite-temperature mechanisms, and second, a dense volume–temperature grid on which the calculations are performed. A systematic workflow for such calculations requires computational efficiency and reliability, and has not been available within an ab initio framework so far. Here, we elucidate such a framework involving direct upsampling, thermodynamic integration and machine-learning potentials, allowing us to incorporate, in particular, the full effect of anharmonic vibrations. The improved methodology has a five-times speed-up compared to state-of-the-art methods. We calculate equilibrium thermodynamic properties up to the melting point for bcc Nb, magnetic fcc Ni, fcc Al, and hcp Mg, and find remarkable agreement with experimental data. A strong impact of anharmonicity is observed specifically for Nb. The introduced procedure paves the way for the development of ab initio thermodynamic databases. | en |
dc.identifier.issn | 2057-3960 | |
dc.identifier.other | 1860223044 | |
dc.identifier.uri | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-134991 | de |
dc.identifier.uri | http://elib.uni-stuttgart.de/handle/11682/13499 | |
dc.identifier.uri | http://dx.doi.org/10.18419/opus-13480 | |
dc.language.iso | en | de |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/865855 | de |
dc.relation.uri | doi:10.1038/s41524-022-00956-8 | de |
dc.rights | info:eu-repo/semantics/openAccess | de |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | de |
dc.subject.ddc | 530 | de |
dc.title | High-accuracy thermodynamic properties to the melting point from ab initio calculations aided by machine-learning potentials | en |
dc.type | article | de |
ubs.fakultaet | Chemie | de |
ubs.institut | Institut für Materialwissenschaft | de |
ubs.publikation.seiten | 12 | de |
ubs.publikation.source | npj computational materials 9 (2023), No. 3 | de |
ubs.publikation.typ | Zeitschriftenartikel | de |