High-accuracy thermodynamic properties to the melting point from ab initio calculations aided by machine-learning potentials

dc.contributor.authorJung, Jong Hyun
dc.contributor.authorSrinivasan, Prashanth
dc.contributor.authorForslund, Axel
dc.contributor.authorGrabowski, Blazej
dc.date.accessioned2023-09-13T07:53:59Z
dc.date.available2023-09-13T07:53:59Z
dc.date.issued2023de
dc.description.abstractAccurate prediction of thermodynamic properties requires an extremely accurate representation of the free-energy surface. Requirements are twofold - first, the inclusion of the relevant finite-temperature mechanisms, and second, a dense volume–temperature grid on which the calculations are performed. A systematic workflow for such calculations requires computational efficiency and reliability, and has not been available within an ab initio framework so far. Here, we elucidate such a framework involving direct upsampling, thermodynamic integration and machine-learning potentials, allowing us to incorporate, in particular, the full effect of anharmonic vibrations. The improved methodology has a five-times speed-up compared to state-of-the-art methods. We calculate equilibrium thermodynamic properties up to the melting point for bcc Nb, magnetic fcc Ni, fcc Al, and hcp Mg, and find remarkable agreement with experimental data. A strong impact of anharmonicity is observed specifically for Nb. The introduced procedure paves the way for the development of ab initio thermodynamic databases.en
dc.identifier.issn2057-3960
dc.identifier.other1860223044
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-134991de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13499
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13480
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/865855de
dc.relation.uridoi:10.1038/s41524-022-00956-8de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc530de
dc.titleHigh-accuracy thermodynamic properties to the melting point from ab initio calculations aided by machine-learning potentialsen
dc.typearticlede
ubs.fakultaetChemiede
ubs.institutInstitut für Materialwissenschaftde
ubs.publikation.seiten12de
ubs.publikation.sourcenpj computational materials 9 (2023), No. 3de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s41524-022-00956-8.pdf
Size:
1.9 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: