SalChartQA: question-driven saliency on information visualisations

dc.contributor.authorWang, Yao
dc.contributor.authorWang, Weitian
dc.contributor.authorAbdelhafez, Abdullah
dc.contributor.authorElfares, Mayar
dc.contributor.authorHu, Zhiming
dc.contributor.authorBâce, Mihai
dc.contributor.authorBulling, Andreas
dc.date.accessioned2024-07-24T14:50:27Z
dc.date.available2024-07-24T14:50:27Z
dc.date.issued2024de
dc.description.abstractUnderstanding the link between visual attention and user’s needs when visually exploring information visualisations is under-explored due to a lack of large and diverse datasets to facilitate these analyses. To fill this gap, we introduce SalChartQA - a novel crowd-sourced dataset that uses the BubbleView interface as a proxy for human gaze and a question-answering (QA) paradigm to induce different information needs in users. SalChartQA contains 74,340 answers to 6,000 questions on 3,000 visualisations. Informed by our analyses demonstrating the tight correlation between the question and visual saliency, we propose the first computational method to predict question-driven saliency on information visualisations. Our method outperforms state-of-the-art saliency models, improving several metrics, such as the correlation coefficient and the Kullback-Leibler divergence. These results show the importance of information needs for shaping attention behaviour and paving the way for new applications, such as task-driven optimisation of visualisations or explainable AI in chart question-answering.en
dc.identifier.isbn979-8-4007-0330-0
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-147259de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14725
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14706
dc.language.isoende
dc.relation.uridoi:10.1145/3613904.3642942de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleSalChartQA: question-driven saliency on information visualisationsen
dc.typeconferenceObjectde
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Visualisierung und Interaktive Systemede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.konferenznameCHI Conference on Human Factors in Computing Systems (2024, Honolulu)de
ubs.publikation.noppnyesde
ubs.publikation.sourceCHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems. New York, NY : ACM, 2024. - ISBN 979-8-4007-0330-0, article 763de
ubs.publikation.typKonferenzbeitragde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
wang24_chi.pdf
Size:
5.96 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: