A nonsmooth generalized‐alpha method for mechanical systems with frictional contact

dc.contributor.authorCapobianco, Giuseppe
dc.contributor.authorHarsch, Jonas
dc.contributor.authorEugster, Simon R.
dc.contributor.authorLeine, Remco I.
dc.date.accessioned2024-08-02T13:33:21Z
dc.date.available2024-08-02T13:33:21Z
dc.date.issued2021de
dc.date.updated2023-11-14T02:57:23Z
dc.description.abstractIn this article, the existing nonsmooth generalized‐α method for the simulation of mechanical systems with frictionless contacts, modeled as unilateral constraints, is extended to systems with frictional contacts. On that account, we complement the unilateral constraints with set‐valued Coulomb‐type friction laws. Moreover, we devise a set of benchmark systems, which can be used to validate numerical schemes for mechanical systems with frictional contacts. Finally, this set of benchmarks is used to numerically assert the properties striven for during the derivation of the presented scheme. Specifically, we show that the presented scheme can reproduce the dynamics of the frictional contact adequately and no numerical penetration of the contacting bodies arises - a big issue for most popular time‐stepping schemes such as the one of Moreau. Moreover, we demonstrate that the presented scheme performs well for multibody systems containing flexible parts and that it allows general parametrizations such as the use of unit quaternions for the rotation of rigid bodies.en
dc.identifier.issn1097-0207
dc.identifier.issn0029-5981
dc.identifier.other1897940440
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-147810de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14781
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14762
dc.language.isoende
dc.relation.uridoi:10.1002/nme.6801de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleA nonsmooth generalized‐alpha method for mechanical systems with frictional contacten
dc.typearticlede
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.institutInstitut für Nichtlineare Mechanikde
ubs.publikation.seiten6497-6526de
ubs.publikation.sourceInternational journal for numerical methods in engineering 122 (2021), S. 6497-6526de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
NME_NME6801.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: