Designing covalent organic framework‐based light‐driven microswimmers toward therapeutic applications

dc.contributor.authorSridhar, Varun
dc.contributor.authorYildiz, Erdost
dc.contributor.authorRodríguez‐Camargo, Andrés
dc.contributor.authorLyu, Xianglong
dc.contributor.authorYao, Liang
dc.contributor.authorWrede, Paul
dc.contributor.authorAghakhani, Amirreza
dc.contributor.authorAkolpoglu, Birgul M.
dc.contributor.authorPodjaski, Filip
dc.contributor.authorLotsch, Bettina V.
dc.contributor.authorSitti, Metin
dc.date.accessioned2023-10-06T12:24:05Z
dc.date.available2023-10-06T12:24:05Z
dc.date.issued2023de
dc.date.updated2023-07-11T19:28:04Z
dc.description.abstractWhile micromachines with tailored functionalities enable therapeutic applications in biological environments, their controlled motion and targeted drug delivery in biological media require sophisticated designs for practical applications. Covalent organic frameworks (COFs), a new generation of crystalline and nanoporous polymers, offer new perspectives for light‐driven microswimmers in heterogeneous biological environments including intraocular fluids, thus setting the stage for biomedical applications such as retinal drug delivery. Two different types of COFs, uniformly spherical TABP‐PDA‐COF sub‐micrometer particles and texturally nanoporous, micrometer‐sized TpAzo‐COF particles are described and compared as light‐driven microrobots. They can be used as highly efficient visible‐light‐driven drug carriers in aqueous ionic and cellular media. Their absorption ranging down to red light enables phototaxis even in deeper and viscous biological media, while the organic nature of COFs ensures their biocompatibility. Their inherently porous structures with ≈2.6  and ≈3.4 nm pores, and large surface areas allow for targeted and efficient drug loading even for insoluble drugs, which can be released on demand. Additionally, indocyanine green (ICG) dye loading in the pores enables photoacoustic imaging, optical coherence tomography, and hyperthermia in operando conditions. This real‐time visualization of the drug‐loaded COF microswimmers enables unique insights into the action of photoactive porous drug carriers for therapeutic applications.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipUKRIde
dc.description.sponsorshipEuropean Union's Horizon 2020 research and innovation programde
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.other1867454998
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-135828de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13582
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13563
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/101059593de
dc.relation.uridoi:10.1002/adma.202301126de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc540de
dc.titleDesigning covalent organic framework‐based light‐driven microswimmers toward therapeutic applicationsen
dc.typearticlede
ubs.fakultaetChemiede
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutFakultät Chemie (Institutsübergreifend)de
ubs.institutMax-Planck-Institut für Festkörperforschungde
ubs.institutMax-Planck-Institut für Intelligente Systemede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten14de
ubs.publikation.sourceAdvanced materials 35 (2023), No. 2301126de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
ADMA_ADMA202301126.pdf
Size:
3.78 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: