Fragments of first-order logic over infinite words

Thumbnail Image

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

We give topological and algebraic characterizations as well as language theoretic descriptions of the following subclasses of first-order logic for omega-languages: Sigma2, FO2, the intersection of FO2 and Sigma2, and Delta2 (and by duality Pi2 and the intersection of FO2 and Pi2). These descriptions extend the respective results for finite words. In particular, we relate the above fragments to language classes of certain (unambiguous) polynomials. An immediate consequence is the decidability of the membership problem of these classes, but this was shown before by Wilke and Bojanczyk and is therefore not our main focus. The paper is about the interplay of algebraic, topological, and language theoretic properties.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By