Einsatz von Machine-Learning-Methoden zur adaptiven Darstellung von Software-Metriken
Files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Auf manchen SonarQube-Instanzen wird die verfügbare Fläche der Webseite nicht effizient genutzt und große Teile der Seite enthalten Leerflächen. Damit diese Flächen genutzt werden können, um genau die Informationen darzustellen, weswegen der Benutzer die Webseite aufgerufen hat, wurde im Rahmen dieser Arbeit mit DeepSonar eine adaptive Benutzeroberfläche für die Codeanalyse-Plattform SonarQube entwickelt. Diese erlernt mittels Machine-Learning die für den aktuellen Benutzer und Nutzungskontext relevantesten Informationen, d. h. die aus einer Programmcodeanalyse resultierenden Software-Metriken. Anhand der Ergebnisse des Machine-Learnings wird die Weboberfläche von SonarQube angepasst, sodass diese Metriken in der davor ungenutzten Fläche auf der Startseite angezeigt werden.