Scalable hypergraph partitioning

dc.contributor.authorGeppert, Heiko
dc.date.accessioned2017-10-23T14:57:42Z
dc.date.available2017-10-23T14:57:42Z
dc.date.issued2017de
dc.description.abstractThe interest in graph partitioning has become quite huge due to growing problem sizes. Therefore more abstract solutions are desirable. In this thesis, hypergraph partitioning is investigated since hypergraphs provide a better level of abstraction than normal graphs. Further, restreaming approaches are examined because the partitioning results of real time strategies are often not satisfiable. It will be shown that they can perform up to 15\% better than real time approaches and can sometimes even hold up to polynomial approaches. By putting more thought into the restreaming, the partitioning results become even better. This is shown empirical when proposing Fractional Restreaming a novel "Partial Forgetting" strategy. Meanwhile, the additional runtime needed is negligible compared to polynomial strategies. Finally SHP, a novel graph partitioning and evaluation framework is introduced.en
dc.identifier.other495581321
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-92807de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/9280
dc.identifier.urihttp://dx.doi.org/10.18419/opus-9263
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleScalable hypergraph partitioningen
dc.typebachelorThesisde
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Parallele und Verteilte Systemede
ubs.publikation.seiten76de
ubs.publikation.typAbschlussarbeit (Bachelor)de

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
ausarbeitung.pdf
Size:
989.08 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: