Computational optimisation of urban design models : a systematic literature review

dc.contributor.authorTay, JingZhi
dc.contributor.authorOrtner, Frederick Peter
dc.contributor.authorWortmann, Thomas
dc.contributor.authorAydin, Elif Esra
dc.date.accessioned2024-09-11T07:55:20Z
dc.date.available2024-09-11T07:55:20Z
dc.date.issued2024de
dc.date.updated2024-08-08T14:48:14Z
dc.description.abstractThe densification of urban spaces globally has contributed to a need for design tools supporting the planning of more sustainable, efficient, and liveable cities. Urban Design Optimisation (UDO) responds to this challenge by providing a means to explore many design solutions for a district, evaluate multiple objectives, and make informed selections from many Pareto-efficient solutions. UDO distinguishes itself from other forms of design optimisation by addressing the challenges of incorporating a wide range of planning goals, managing the complex interactions among various urban datasets, and considering the social-technical aspects of urban planning involving multiple stakeholders. Previous reviews focusing on specific topics within UDO do not sufficiently address these challenges. This PRISMA systematic literature review provides an overview of research on topics related to UDO from 2012 to 2022, with articles analysed across seven descriptive categories. This paper presents a discussion on the state-of-the-art and identified gaps present in each of the seven categories. Finally, this paper argues that additional research to improve the socio-technical understanding and usability of UDO would require: (i) methods of optimisation across multiple models, (ii) interfaces that address a multiplicity of stakeholders, (iii) exploration of frameworks for scenario building and backcasting, and (iv) advancing AI applications for UDO, including generalizable surrogates and user preference learning.en
dc.description.sponsorshipPartially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy-EXC 2120/1-390831618.de
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG, German Research Foundation)de
dc.identifier.issn2413-8851
dc.identifier.other1902425294
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-149329de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14932
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14913
dc.language.isoende
dc.relation.uridoi:10.3390/urbansci8030093de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc720de
dc.titleComputational optimisation of urban design models : a systematic literature reviewen
dc.typearticlede
ubs.fakultaetArchitektur und Stadtplanungde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Computerbasiertes Entwerfen und Baufertigungde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten24de
ubs.publikation.sourceUrban science 8 (2024), No. 93de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
urbansci-08-00093-v2.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format
Description:
Artikel
No Thumbnail Available
Name:
urbansci-08-00093-s001.zip
Size:
4.49 MB
Format:
Unknown data format
Description:
Supplement

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: