Impact of remote mutations on metallo-beta-lactamase substrate specificity : implications for the evolution of antibiotic resistance

dc.contributor.authorÖlschläger, Peterde
dc.contributor.authorMayo, Stephen L.de
dc.contributor.authorPleiss, Jürgende
dc.date.accessioned2006-06-02de
dc.date.accessioned2016-03-31T07:46:45Z
dc.date.available2006-06-02de
dc.date.available2016-03-31T07:46:45Z
dc.date.issued2005de
dc.date.updated2015-12-11de
dc.description.abstractMetallo-beta-lactamases have raised concerns due to their ability to hydrolyze a broad spectrum of beta-lactam antibiotics. The G262S point mutation distinguishing the metallo-beta-lactamase IMP 1 from IMP 6 has no effect on the hydrolysis of the drugs cephalothin and cefotaxime, but significantly improves catalytic efficiency toward cephaloridine, ceftazidime, benzylpenicillin, ampicillin, and imipenem. This change in specificity occurs even though residue 262 is remote from the active site. We investigated the substrate specificities of five other point mutants resulting from single nucleotide substitutions at positions near residue 262: G262A, G262V, S121G, F218Y and F218I. The results suggest two types of substrates: type I (nitrocefin, cephalothin and cefotaxime), which are converted equally well by IMP-6, IMP-1, and G262A, but even more efficiently by the other mutants, and type II (ceftazidime, benzylpenicillin, ampicillin, and imipenem), which are hydrolyzed much less efficiently by all the mutants, with IMP-1 being the most active. G262V, S121G, F218Y, and F218I improve conversion of type I substrates, whereas G262A and IMP-1 improve conversion of type II substrates, indicating two distinct evolutionary adaptations from IMP-6. Substrate structure may explain the catalytic efficiencies observed. Type I substrates have R2 electron donors, which may stabilize the substrate intermediate in the binding pocket and lead to enhanced activity. In contrast, the absence of these stabilizing interactions with type II substrates may result in poor conversion and increased sensitivity to mutations. This observation may assist future drug design. As the G262A and F218Y mutants confer effective resistance to Escherichia coli BL21(DE3) cells (high minimal inhibitory concentrations), they are likely to evolve naturally.en
dc.identifier.other262578468de
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-26809de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/853
dc.identifier.urihttp://dx.doi.org/10.18419/opus-836
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.classificationBioinformatik , Molekulare Bioinformatik , Lactamase <beta->de
dc.subject.ddc540de
dc.subject.othermetallo-beta-lactamase , metalloenzyme , substrate specificity , enzyme evolution , point mutationen
dc.titleImpact of remote mutations on metallo-beta-lactamase substrate specificity : implications for the evolution of antibiotic resistanceen
dc.typepreprintde
ubs.fakultaetFakultät Chemiede
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Technische Biochemiede
ubs.institutSonstige Einrichtungde
ubs.opusid2680de
ubs.publikation.sourceProtein science 14 (2005), S. 765-774. URL http://dx.doi.org/10.1110%2Fps.041093405de
ubs.publikation.typPreprintde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Oelschlaeger_2005.pdf
Size:
317.28 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1021 B
Format:
Plain Text
Description: