New crystal structures of rare‐earth metal(III) oxotellurates(IV) RE2Te3O9: A1‐type (RE=La, Ce) and A2‐type (RE=Pr, Nd)
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The new rare-earth metal(III) oxotellurates(IV) RE2Te3O9 (RE=La-Nd) of the so far unknown A-type structure can be obtained as needle-shaped single crystals through solid-state reactions of the corresponding binary oxides. Their crystal structures were determined as A1-type for RE=La and Ce or A2-type for RE=Pr and Nd by single-crystal X-ray diffraction. Both structure types crystallize in the monoclinic crystal system, but in two different non-centrosymmetric space groups: the A1-type with Z=8 in space group P21 (La2Te3O9: a=569.54(3), b=2230.12(13), c=1464.71(4) pm, β=101.205(3)°; Ce2Te3O9: a=567.02(3), b=2222.61(13), c=1457.13(9) pm, β=101.134(3)°) or the A2-type with Z=16 in space group Cc (Pr2Te3O9: a=2838.61(16), b=563.89(3), c=2522.08(15) pm, β=118.816(3)°; Nd2Te3O9: a=2826.38(16), b=561.47(3), c=2511.94(15) pm, β=118.841(3)°). In spite of the differences in the unit-cell parameters and the symmetry, both structures consist of quite similar fundamental building blocks (FBBs) consisting of eight crystallographically distinct rare-earth metal-oxygen polyhedra with C.N.(RE3+) from seven to nine and always twelve different ψ1-tetrahedral oxotellurate(IV) anions [TeO3]2-, which show a high number of secondary bonding interactions (SBIs) with each other in all four cases.