Fargo : validation of space-relevant ferrofluid applications on the ISS

dc.contributor.authorSütterlin, Saskia
dc.contributor.authorBölke, Daniel
dc.contributor.authorEhresmann, Manfred
dc.contributor.authorHeinz, Nicolas
dc.contributor.authorDietrich, Janoah
dc.contributor.authorKarahan, Bahar
dc.contributor.authorKob, Maximilian
dc.contributor.authorO’Donohue, Michael
dc.contributor.authorKorn, Christian
dc.contributor.authorGrossmann, Steffen
dc.contributor.authorPhilipp, Daniel
dc.contributor.authorSteinert, Michael
dc.contributor.authorAcker, Denis
dc.contributor.authorRemane, Yolantha
dc.contributor.authorKreul, Phil
dc.contributor.authorSchneider, Maximilan
dc.contributor.authorZajonz, Sebastian
dc.contributor.authorWank, Bianca
dc.contributor.authorTurco, Fabrizio
dc.contributor.authorBuchfink, Manuel
dc.contributor.authorGutierrez, Elizabeth
dc.contributor.authorHofmann, Sonja
dc.contributor.authorRuffner, Silas
dc.contributor.authorWagner, Alexander
dc.contributor.authorBreitenbücher, Laura
dc.contributor.authorSchäfer, Felix
dc.contributor.authorHerdrich, Georg
dc.contributor.authorFasoulas, Stefanos
dc.date.accessioned2025-06-10T12:07:45Z
dc.date.issued2024
dc.date.updated2025-01-26T06:44:05Z
dc.description.abstractThe Ferrofluid Application Research Goes Orbital (FARGO) project desires to harness the potential of ferrofluids for advanced space system applications. Thereby, the student-led research project aims to develop, evaluate and subsequently validate three different ferrofluid-based applications on board the International Space Station (ISS): a novel attitude control system called Ferrowheel as well as a Thermal and an Electrical Switch. The project is part of the Überflieger2 competition of the German Aerospace Center (DLR) in cooperation with the Luxembourg Space Agency (LSA). Central to this study is the role of ferrofluids in ensuring the functional principles to minimize the number of moving components ultimately. Therefore, the proposed systems have the potential to mitigate wear, reduce friction, and consequently improve the longevity and reliability of space systems. In the Ferrowheel, a disc is supported on ferrofluid cushions instead of conventional ball-bearing-mounted rotors. This innovative approach, facilitated by the magnetic pressure positioning of the ferrofluid, eliminates the need for solid-to-solid contact. Circularly arranged coils function as the stator, propelling the disc with a 3-phase control, resulting in a spinning magnetic field. In addition to determining the generated torque, the objective is to validate experiments on system operations in which various acceleration and deceleration manoeuvres, as well as the stored angular momentum, are evaluated. The Electrical Switch leverages a self-manufactured magnetorheological fluid (MRF) developed by augmenting a liquid-metal base with iron powder. As a result, the fluid, akin to ferrofluid, has a magnetic field-responsive movement. Since a liquid metal is used as the base, the ferrofluid-like fluid acts as both the magnetically actuatable and the current conducting fluid. To enable a current flow, the fluid is brought between the two electrical contacts utilizing electropermanent magnets (EPMs). These magnets combine the high magnetic field strengths of permanent magnets with the adaptive switching capability of electromagnets. Compared to all other demand-controlled magnetic field sources, this results in the great advantage that no energy is consumed as long as they are in one state. Only the switching process of the EPMs itself requires a high amount of energy, but only for a relatively short period. The switching behaviour under different loads will be investigated, evaluated, and compared to reference data recorded on Earth. The design of the Thermal Switch is characterized by the fact that it can be actively switched. Active thermal switching is still a relatively new field, so there is little comparative data from industrial solutions. Particularly for spacecraft, thermal design is crucial because the harsh environment of space must be taken into account. In addition to the challenge that heat can only be transferred to the environment via thermal radiation, severe conditions in space are characterized by extreme temperature differences. While extreme heat develops on the satellite surface on the side facing the sun, the opposite is valid on the shaded side. The resulting heat flow, which is irregular in time, location, and direction, leads to temperature peaks and gradients that can affect the system’s performance, functionality, and reliability. Active switching provides selective control over heat transfer, allowing more flexible temperature regulation in critical areas and implementing a dynamic system response. Different design ideas are tested and evaluated for the applications in various experiments. The most suitable design is finally selected, further modified, and tailored for experimentation on the ISS and presented in this study. The most significant challenge is the time-critical factor of only a 1-year development phase. A total of 21 students from six different courses of study and two supervising PhD students from the Institute of Space Systems are involved in the FARGO project, all members of the small satellite student society at the University of Stuttgart, KSat e.V.en
dc.description.sponsorshipProjekt DEAL
dc.description.sponsorshipGerman Aerospace Center
dc.description.sponsorshipUniversität Stuttgart
dc.identifier.issn1868-2510
dc.identifier.issn1868-2502
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-165640de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16564
dc.identifier.urihttps://doi.org/10.18419/opus-16545
dc.language.isoen
dc.relation.uridoi:10.1007/s12567-024-00539-x
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620
dc.titleFargo : validation of space-relevant ferrofluid applications on the ISSen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetLuft- und Raumfahrttechnik und Geodäsie
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutInstitut für Raumfahrtsysteme
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.noppnyesde
ubs.publikation.seiten731-752
ubs.publikation.sourceCEAS space journal 16 (2024), S. 731-752
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
12567_2024_Article_539.pdf
Size:
3.22 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: