Structural and magnetic properties of newly found BaFeO2.667 synthesized by oxidizing BaFeO2.5 obtained via nebulized spray pyrolysis

Abstract

A new vacancy-ordered perovskite-type compound Ba3Fe3O8 (BaFeO2.667) was prepared by oxidizing BaFeO2.5 (P21/c) with the latter compound obtained by a spray-pyrolysis technique. The structure of Ba3Fe3O8 was found to be isotypic to Ba3Fe3O7F (P21/m) and can be written as Ba3Fe3+2Fe4+1O8. Mössbauer spectroscopy and ab initio calculations were used to confirm mixed iron oxidation states, showing allocation of the tetravalent iron species on the tetrahedral site and octahedral as well as square pyramidal coordination for the trivalent species within a G-type antiferromagnetic ordering. The uptake and release of oxygen was investigated over a broad temperature range from RT to 1100 °C under pure oxygen and ambient atmosphere via a combination of DTA/TG and variable temperature diffraction measurements. The compound exhibits a strong lattice enthalpy driven reduction to monoclinic and cubic BaFeO2.5 at elevated temperatures.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By