Fluent integration of laboratory data into biocatalytic process simulation using EnzymeML, DWSIM, and ontologies

dc.contributor.authorBehr, Alexander S.
dc.contributor.authorSurkamp, Julia
dc.contributor.authorAbbaspour, Elnaz
dc.contributor.authorHäußler, Max
dc.contributor.authorLütz, Stephan
dc.contributor.authorPleiss, Jürgen
dc.contributor.authorKockmann, Norbert
dc.contributor.authorRosenthal, Katrin
dc.date.accessioned2024-06-12T10:39:37Z
dc.date.available2024-06-12T10:39:37Z
dc.date.issued2024de
dc.date.updated2024-04-25T13:22:53Z
dc.description.abstractThe importance of biocatalysis for ecologically sustainable syntheses in the chemical industry and for applications in everyday life is increasing. To design efficient applications, it is important to know the related enzyme kinetics; however, the measurement is laborious and error-prone. Flow reactors are suitable for rapid reaction parameter screening; here, a novel workflow is proposed including digital image processing (DIP) for the quantification of product concentrations, and the use of structured data acquisition with EnzymeML spreadsheets combined with ontology-based semantic information, leading to rapid and smooth data integration into a simulation tool for kinetics evaluation. One of the major findings is that a flexibly adaptive ontology is essential for FAIR (findability, accessibility, interoperability, reusability) data handling. Further, Python interfaces enable consistent data transfer.en
dc.description.sponsorshipASB, EAde
dc.identifier.issn2227-9717
dc.identifier.other1891310135
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-145178de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14517
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14498
dc.language.isoende
dc.relation.uridoi:10.3390/pr12030597de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc660de
dc.titleFluent integration of laboratory data into biocatalytic process simulation using EnzymeML, DWSIM, and ontologiesen
dc.typearticlede
ubs.fakultaetChemiede
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Biochemie und Technische Biochemiede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten13de
ubs.publikation.sourceProcesses 12 (2024), No. 597de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
processes-12-00597-v2.pdf
Size:
2.54 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: