Li5Sn, the most lithium-rich binary stannide : a combined experimental and computational study

dc.contributor.authorStelzer, Robert U.
dc.contributor.authorIkeda, Yuji
dc.contributor.authorSrinivasan, Prashanth
dc.contributor.authorLehmann, Tanja S.
dc.contributor.authorGrabowski, Blazej
dc.contributor.authorNiewa, Rainer
dc.date.accessioned2022-08-24T06:47:56Z
dc.date.available2022-08-24T06:47:56Z
dc.date.issued2022de
dc.description.abstractFrom reaction of excess lithium with tin, we isolate well-crystallized Li5Sn and solve the crystal structure from single-crystal X-ray diffraction data. The orthorhombic structure (space group Cmcm) features the same coordination polyhedra around tin and lithium as previously predicted by electronic structure calculations for this composition, however differently arranged. An extensive ab initio analysis, including thermodynamic integration using Langevin dynamics in combination with a machine-learning potential (moment tensor potential), is conducted to understand the thermodynamic stability of this Cmcm Li5Sn structure observed in our experiments. Among the 108 Li5Sn structures systematically derived using the structure enumeration algorithm, including the experimental Cmcm structure and those obtained in previous ab initio studies, another new structure with the space group Immm is found to be energetically most stable at 0 K. This computationally discovered Immm structure is also found to be thermodynamically more stable than the Cmcm structure at finite temperatures, indicating that the Cmcm Li5Sn structure observed in our experiments is favored likely due to kinetic reasons rather than thermodynamics.en
dc.identifier.issn1520-5126
dc.identifier.issn0002-7863
dc.identifier.other181519846X
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-123245de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12324
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12307
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/865855de
dc.relation.uridoi:10.1021/jacs.1c10640de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc530de
dc.titleLi5Sn, the most lithium-rich binary stannide : a combined experimental and computational studyen
dc.typearticlede
ubs.fakultaetChemiede
ubs.institutInstitut für Anorganische Chemiede
ubs.institutInstitut für Materialwissenschaftde
ubs.publikation.seiten7096-7110de
ubs.publikation.sourceJournal of the American Chemical Society 144 (2022), S. 7096-7110de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Li5Sn.pdf
Size:
5.21 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: