Multivariate motion patterns and applications to rainfall radar data

dc.contributor.authorFischer, Svenja
dc.contributor.authorOesting, Marco
dc.contributor.authorSchnurr, Alexander
dc.date.accessioned2024-11-04T15:53:05Z
dc.date.available2024-11-04T15:53:05Z
dc.date.issued2023de
dc.date.updated2024-10-10T08:21:14Z
dc.description.abstractThe classification of movement in space is one of the key tasks in environmental science. Various geospatial data such as rainfall or other weather data, data on animal movement or landslide data require a quantitative analysis of the probable movement in space to obtain information on potential risks, ecological developments or changes in future. Usually, machine-learning tools are applied for this task, as these approaches are able to classify large amounts of data. Yet, machine-learning approaches also have some drawbacks, e.g. the often required large training sets and the fact that the algorithms are often hard to interpret. We propose a classification approach for spatial data based on ordinal patterns. Ordinal patterns have the advantage that they are easily applicable, even to small data sets, are robust in the presence of certain changes in the time series and deliver interpretative results. They therefore do not only offer an alternative to machine-learning in the case of small data sets but might also be used in pre-processing for a meaningful feature selection. In this work, we introduce the basic concept of multivariate ordinal patterns and the corresponding limit theorem. A simulation study based on bootstrap demonstrates the validity of the results. The approach is then applied to two real-life data sets, namely rainfall radar data and the movement of a leopard. Both applications emphasize the meaningfulness of the approach. Clearly, certain patterns related to the atmosphere and environment occur significantly often, indicating a strong dependence of the movement on the environment.en
dc.description.sponsorshipProjekt DEALde
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipBundesministerium für Bildung und Forschungde
dc.identifier.issn1436-3259
dc.identifier.issn1436-3240
dc.identifier.other1909114340
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-152054de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15205
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15186
dc.language.isoende
dc.relation.uridoi:10.1007/s00477-023-02626-7de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc510de
dc.subject.ddc550de
dc.titleMultivariate motion patterns and applications to rainfall radar dataen
dc.typearticlede
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten1235-1249de
ubs.publikation.sourceStochastic environmental research and risk assessment 38 (2024), S. 1235-1249de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s00477-023-02626-7.pdf
Size:
784.22 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: