Visual analytics of multivariate intensive care time series data

dc.contributor.authorBrich, N.
dc.contributor.authorSchulz, Christoph
dc.contributor.authorPeter, J.
dc.contributor.authorKlingert, W.
dc.contributor.authorSchenk, M.
dc.contributor.authorWeiskopf, Daniel
dc.contributor.authorKrone, M.
dc.date.accessioned2024-08-24T11:23:52Z
dc.date.available2024-08-24T11:23:52Z
dc.date.issued2022de
dc.date.updated2023-11-14T00:09:37Z
dc.description.abstractWe present an approach for visual analysis of high‐dimensional measurement data with varying sampling rates as routinely recorded in intensive care units. In intensive care, most assessments not only depend on one single measurement but a plethora of mixed measurements over time. Even for trained experts, efficient and accurate analysis of such multivariate data remains a challenging task. We present a linked‐view post hoc visual analytics application that reduces data complexity by combining projection‐based time curves for overview with small multiples for details on demand. Our approach supports not only the analysis of individual patients but also of ensembles by adapting existing techniques using non‐parametric statistics. We evaluated the effectiveness and acceptance of our approach through expert feedback with domain scientists from the surgical department using real‐world data: a post‐surgery study performed on a porcine surrogate model to identify parameters suitable for diagnosing and prognosticating the volume state, and clinical data from a public database. The results show that our approach allows for detailed analysis of changes in patient state while also summarizing the temporal development of the overall condition.en
dc.description.sponsorshipCarl Zeiss Stiftungde
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn1467-8659
dc.identifier.issn0167-7055
dc.identifier.other1900823748
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-148853de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14885
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14866
dc.language.isoende
dc.relation.uridoi:10.1111/cgf.14498de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/de
dc.subject.ddc004de
dc.titleVisual analytics of multivariate intensive care time series dataen
dc.typearticlede
ubs.fakultaetZentrale Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutVisualisierungsinstitut der Universität Stuttgartde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten273-286de
ubs.publikation.sourceComputer graphics forum 41 (2022), S. 273-286de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
CGF_CGF14498.pdf
Size:
2.98 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: