Impact of repetitive, ultra-short soft X-ray pulses from processing of steel with ultrafast lasers on human cell cultures
dc.contributor.author | Holland, Julian | |
dc.contributor.author | Lungu, Cristiana | |
dc.contributor.author | Weber, Rudolf | |
dc.contributor.author | Emperle, Max | |
dc.contributor.author | Graf, Thomas | |
dc.date.accessioned | 2025-05-27T15:46:08Z | |
dc.date.issued | 2024 | |
dc.date.updated | 2025-01-23T23:30:52Z | |
dc.description.abstract | Ultrafast lasers, with pulse durations below a few picoseconds, are of significant interest to the industry, offering a cutting-edge approach to enhancing manufacturing processes and enabling the fabrication of intricate components with unparalleled accuracy. When processing metals at irradiances exceeding the evaporation threshold of about 10 10 W/cm² these processes can generate ultra-short, soft X-ray pulses with photon energies above 5 keV. This has prompted extensive discussions and regulatory measures on radiation safety. However, the impact of these ultra-short X-ray pulses on molecular pathways in the context of living cells, has not been investigated so far. This paper presents the first molecular characterization of epithelial cell responses to ultra-short soft X-ray pulses, generated during processing of steel with an ultrafast laser. The laser provided pulses of 6.7 ps with a pulse repetition rate of 300 kHz and an average power of 500 W. The irradiance was 1.95 ×10 13 W/cm 2 . Ambient exposure of vitro human cell cultures, followed by imaging of the DNA damage response and fitting of the data to a calibrated model for the absorbed dose, revealed a linear increase in the DNA damage response relative to the exposure dose. This is in line with findings from work using continuous wave soft X-ray sources and suggests that the ultra-short X-ray pulses do not generate additional hazard. This research contributes valuable insights into the biological effects of ultrafast laser processes and their potential implications for user safety. | en |
dc.description.sponsorship | Projekt DEAL | |
dc.description.sponsorship | Universität Stuttgart | |
dc.identifier.issn | 1432-0630 | |
dc.identifier.issn | 0947-8396 | |
dc.identifier.uri | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-164600 | de |
dc.identifier.uri | https://elib.uni-stuttgart.de/handle/11682/16460 | |
dc.identifier.uri | https://doi.org/10.18419/opus-16441 | |
dc.language.iso | en | |
dc.relation.uri | doi:10.1007/s00339-024-08134-x | |
dc.rights | CC BY | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 600 | |
dc.subject.ddc | 540 | |
dc.subject.ddc | 570 | |
dc.title | Impact of repetitive, ultra-short soft X-ray pulses from processing of steel with ultrafast lasers on human cell cultures | en |
dc.type | article | |
dc.type.version | publishedVersion | |
ubs.fakultaet | Konstruktions-, Produktions- und Fahrzeugtechnik | |
ubs.fakultaet | Fakultäts- und hochschulübergreifende Einrichtungen | |
ubs.fakultaet | Chemie | |
ubs.institut | Institut für Strahlwerkzeuge | |
ubs.institut | Stuttgart Research Center Systems Biology (SRCSB) | |
ubs.institut | Institut für Biochemie und Technische Biochemie | |
ubs.publikation.noppn | yes | de |
ubs.publikation.seiten | 9 | |
ubs.publikation.source | Applied physics, A 130 (2024), No. 951 | |
ubs.publikation.typ | Zeitschriftenartikel |