Optimizing I/O performance with machine learning supported auto-tuning

dc.contributor.advisorResch, Michael M. (Prof. Dr.-Ing. Dr. h.c. Dr. h.c. Prof. E.h.)
dc.contributor.authorBağbaba, Ayşe
dc.date.accessioned2023-07-17T12:39:41Z
dc.date.available2023-07-17T12:39:41Z
dc.date.issued2023de
dc.description.abstractData access is a considerable challenge because of the scalability limitation of I/O. In addition, some applications spend most of their total execution times in I/O. This causes a massive slowdown and wastage of useful computing resources. Unfortunately, there is not any one-size-fits-all solution to the I/O problems, so I/O becomes a limiting factor for such applications. Parallel I/O is an essential technique for scientific applications running on high-performance computing systems. Typically, parallel I/O stacks offer many parameters that need to be tuned to achieve an I/O performance as good as possible. Unfortunately, there is no default best configuration of these parameters; in practice, these differ not only between systems but often also from one application use case to the other. However, scientific users might not have the time or the experience to explore the parameter space sensibly and choose a proper configuration for each application use case. I present a line of solutions to this problem containing a machine learning supported auto-tuning system which uses performance modelling to optimize I/O performance. I demonstrate the value of these solutions across applications and at scale.en
dc.identifier.issn0941-4665
dc.identifier.other1852825545
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-133091de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13309
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13290
dc.language.isoende
dc.publisherStuttgart : Höchstleistungsrechenzentrum, Universität Stuttgartde
dc.relation.ispartofseriesHLRS;25
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleOptimizing I/O performance with machine learning supported auto-tuningen
dc.typedoctoralThesisde
ubs.dateAccepted2023-01-16
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetZentrale Einrichtungende
ubs.institutInstitut für Höchstleistungsrechnende
ubs.institutHöchstleistungsrechenzentrum Stuttgart (HLRS)de
ubs.publikation.seiten2, xx, 114de
ubs.publikation.typDissertationde
ubs.schriftenreihe.nameHLRSde
ubs.thesis.grantorEnergie-, Verfahrens- und Biotechnikde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
abagbaba_phd.pdf
Size:
2.11 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: