Effiziente Modellierung flexibler Robotersysteme zur Echtzeitsimulation am Beispiel eines Leichtbauroboters

Abstract

Die Echtzeitsimulation mechanischer Systeme und deren digitale Zwillinge gewinnen in der Industrie zunehmend an Bedeutung. Sie ermöglichen unter anderem die Optimierung von Steuerungsalgorithmen, die Vorhersage des Systemverhaltens und die Implementierung von Regelstrategien in der Automatisierungstechnik. Ein Industriepartner entwickelt derzeit einen mobilen Leichtbauroboter für den Einsatz im Logistikbereich, bei dem die hohe Flexibilität der Struktur zu elastischen Durchbiegungen führt. Um die Genauigkeit und Leistungsfähigkeit des Roboters zu verbessern, ist eine präzise Modellierung dieser elastischen Effekte erforderlich.

In dieser Arbeit werden zwei verschiedene Modellierungsansätze für die Echtzeitsimulation untersucht. Der erste basiert auf einer physikalischen White-Box-Modellierung als flexibles Mehrkörpersystem, wobei ein klassisches Finite-Elemente-Modell (FEM) durch Modellordnungsreduktion vereinfacht wird, um eine effiziente Berechnung zu ermöglichen. Der zweite Ansatz verwendet ein Finite-Segmente-Modell, das eine Parameteridentifikation erfordert, um eine realitätsgetreue Abbildung des Systemverhaltens zu gewährleisten. Beide Methoden werden auf den Leichtbauroboter angewendet und hinsichtlich ihrer Vor- und Nachteile verglichen. Wesentliche Kriterien sind dabei der Modellierungsaufwand, die Berechnungsgeschwindigkeit und die Genauigkeit der Simulationsergebnisse. Die Ergebnisse liefern eine Entscheidungsgrundlage zur Auswahl geeigneter Modellierungsmethoden in Echtzeitanwendungen.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By